An Ensemble Forecasting Model of Wind Power Outputs Based on Improved Statistical Approaches
Abstract
:1. Introduction
2. The Ensemble-Based Forecasting Method
2.1. Spatial Model
2.2. The ARIMAX Model
2.3. The SVR Model
2.4. The MCS-Based Power Curve Model
2.5. Forecast Combination
2.6. Forecasting Performance Evaluation
3. Wind Power Forecasting Case Study
3.1. Spatial Modeling Results for Wind Speed Correction
3.2. Wind Power Output Forecasting Results Using Ensemble Model
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
List of Symbols and Abbreviations: | |||
NWP | Numerical weather prediction | ARIMAX | Autoregressive integrated moving average with exogenous variable |
AR | Autoregressive | ||
ARMA | Autoregressive moving average | SVR | Support vector machine |
ARIMA | Autoregressive integrated moving average | MCS | Monte-Carlo simulation |
BP | Back propagation | ||
ANN | Artificial neural network | RBF | Radial basis function |
SVM | Support vector machine | MA | Moving average |
AI | Artificial intelligence | AIC | Akaike information criteria |
ML | Machine learning | CLS | Constrained least squares |
NMAE | Normalized mean absolute error | RMSE | Root mean square error |
DB | Database | SCADA | Supervisory control and data acquisition |
References
- Renewable Energy Policy Network for the 21st Century. Renewable 2019 Global Status Report; REN21: Paris, France, 2019; ISBN 978-3-9818911-7-1. [Google Scholar]
- Global Wind Energy Council. Global Wind Energy Outlook; GWEC: Sydney, Australia, 2016. [Google Scholar]
- Soman, S.S.; Zareipour, H.; Malik, O.; Mandal, P. A review of wind power and wind speed forecasting methods with different time horizons. N. Am. Power Symp. 2010, 2010, 1–8. [Google Scholar] [CrossRef]
- Lund, H. Large-scale integration of wind power into different energy systems. Energy 2005, 30, 2402–2412. [Google Scholar] [CrossRef]
- Riahy, G.H.; Abedi, M. Short term wind speed forecasting for wind turbine applications using linear prediction method. Renew. Energy 2008, 33, 35–41. [Google Scholar] [CrossRef]
- Barbosa de Alencar, D.; De Mattos Affonso, C.; Limão de Oliveira, R.C.; Moya Rodríguez, J.L.; Leite, J.C.; Reston Filho, J.C. Different Models for Forecasting Wind Power Generation: Case Study. Energies 2017, 10, 1976. [Google Scholar] [CrossRef] [Green Version]
- Foley, A.M.; Leahy, P.G.; Marvuglia, A.; Mckeogh, S.J. Current methods and advances in forecasting of wind power generated power. Renew. Energy 2012, 37, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.Y. A literature review of wind forecasting methods. J. Power Energy Eng. 2014, 2, 161–168. [Google Scholar] [CrossRef]
- Wang, X.; Guo, P.; Huang, X. A review of wind power forecasting models. Energy Procedia 2011, 12, 770–778. [Google Scholar] [CrossRef] [Green Version]
- Shokrzadeh, S.; Jozani, M.; Bibeau, E. Wind turbine power curve modeling using advanced parametric and nonparametric methods. IEEE Trans. Sustain. Energy 2014, 5, 1262–1269. [Google Scholar] [CrossRef]
- Lei, M.; Shiyan, L.; Chuanwen, J.; Hognling, L.; Yan, Z. A review on the forecasting of wind speed and generated power. Renew. Sustain. Energy Rev. 2009, 13, 915–920. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Q.; Meng, D.; Zhu, P. Deterministic and probabilistic wind power forecasting using a variational Bayesian-based adaptive robust multi-kernel regression model. Appl. Energy 2017, 208, 1097–1112. [Google Scholar] [CrossRef]
- Shi, J.; Guo, J.; Zheng, S. Evaluation of hybrid forecasting approaches for wind speed and power generation time series. Renew. Sustain. Energy Rev. 2012, 16, 3471–3480. [Google Scholar] [CrossRef]
- Sideratos, G.; Hatziargyriou, N.D. An advanced statistical method for wind power forecasting. IEEE Trans. Power Syst. 2007, 22, 258–265. [Google Scholar] [CrossRef]
- Monteiro, C.; Bessa, R.; Miranda, V.; Botterud, A.; Wang, J.; Conzelmann, G. Wind Power Forecasting: State-of-the-Art 2009; Technical Report No. ANL/DIS-10-1; Argonne National Lab (ANL): Argonne, IL, USA, 2009.
- Zhao, X.; Wang, S.; Li, T. Review of evaluation criteria and main methods of wind power forecasting. Energy Procedia 2011, 12, 761–769. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Heap, A.D. A Review of Spatial Interpolation Methods for Environmental Scientist; Geoscience Australia: Canberra, Australia, 2008; pp. 1448–2177.
- Cressie, N. Statistics for Spatial Data; Wiley: New York, NY, USA, 1993; ISBN 9780471002550. [Google Scholar]
- Luo, W.; Taylor, M.C.; Parker, S.R. A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed data from England and Wales. Int. J. Climatol. 2008, 28, 947–959. [Google Scholar] [CrossRef]
- Amjady, N.; Abedinia, O. Short term wind power prediction based on improved Kriging interpolation, empirical mode decomposition, and closed-loop forecasting engine. Sustainability 2017, 9, 2104. [Google Scholar] [CrossRef] [Green Version]
- Peter, Ď.; Silvia, P. ARIMA vs. ARIMAX-which approach is better to analyze and forecast macroeconomic time series. In Proceedings of the 30th International Conference Mathematical Methods in Economics, Karviná, Czech Republic, 1–13 September 2012. [Google Scholar]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 978-1-118-67502-1. [Google Scholar]
- Kim, D.; Hur, J. Short-term probabilistic forecasting of wind energy resources using the enhanced ensemble method. Energy 2018, 157, 211–226. [Google Scholar] [CrossRef]
- Brockwell, P.J.; Davis, R.A. Introduction to Time Series and Forecasting, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Law, M. A Simple Introduction to Support Vector Machines. Available online: https://sikoried.github.io/sequence-learning/09-sequence-kernels/intro_svm_new.pdf (accessed on 27 January 2020).
- Drucker, H.; Burges, C.J.; Kaufman, L.; Smola, A.J.; Vapnik, V. Support vector regression machines. In Advanced in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 1997; pp. 155–161. [Google Scholar]
- Award, M.; Khanna, R. Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers; Springer: Berlin, Germany, 2015; ISBN 978-1-4302-5990-9. [Google Scholar]
- Wu, Y.K.; Hong, J.S. A literature review of wind forecasting technology in the world. In Proceedings of the 2007 IEEE Lausanne Power Tech, Lausanne, Switzerland, 1–5 July 2007. [Google Scholar] [CrossRef]
- Rubinstein, R.Y.; Kroese, D.P. Simulation and the Monte Carlo Method, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; ISBN 978-1-118-63216-1. [Google Scholar]
- Weiss, C.E.; Raviv, E.; Roetzer, G. Forecast Combination in R using Forecast Comb Package. R. J. 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Thordarson, F.Ö.; Madsen, H.; Nielsen, H.A.; Pinson, P. Conditional weighted combination of wind power forecasts. Wind Energy 2010, 13, 751–763. [Google Scholar] [CrossRef]
Forecasting Methods | Models | Examples | Remarks |
---|---|---|---|
Physical models | NWP |
|
|
Statistical models | Time series model |
|
|
AI model |
|
| |
ML model |
|
| |
Combination models | - |
|
|
Time Horizon | Time | Application Purpose |
---|---|---|
Very-short-term | 8 h ahead |
|
Short-term | Up to 48 h ahead |
|
Medium-term | Up to 7 days ahead |
|
Long-term | 1 year of more ahead |
|
Model | ARIMAX | SVR | MCS |
---|---|---|---|
NMAE | 9.81 | 10.43 | 8.48 |
RMSE | 4.87 | 5.22 | 4.44 |
Model | ARIMAX | SVR | MCS | Ensemble |
---|---|---|---|---|
NMAE | 10.39 | 9.44 | 9.07 | 8.75 |
RMSE | 5.01 | 4.34 | 4.35 | 4.28 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Hur, J. An Ensemble Forecasting Model of Wind Power Outputs Based on Improved Statistical Approaches. Energies 2020, 13, 1071. https://doi.org/10.3390/en13051071
Kim Y, Hur J. An Ensemble Forecasting Model of Wind Power Outputs Based on Improved Statistical Approaches. Energies. 2020; 13(5):1071. https://doi.org/10.3390/en13051071
Chicago/Turabian StyleKim, Yeojin, and Jin Hur. 2020. "An Ensemble Forecasting Model of Wind Power Outputs Based on Improved Statistical Approaches" Energies 13, no. 5: 1071. https://doi.org/10.3390/en13051071
APA StyleKim, Y., & Hur, J. (2020). An Ensemble Forecasting Model of Wind Power Outputs Based on Improved Statistical Approaches. Energies, 13(5), 1071. https://doi.org/10.3390/en13051071