Petrographic Characteristics of Sandstones as a Basis to Evaluate Their Suitability in Construction and Energy Storage Applications. A Case Study from Klepa Nafpaktias (Central Western Greece)
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Rock Material Tests
3.2.2. Concrete Tests
4. Results
4.1. Test Results of Aggregates
4.1.1. Petrographic Features of Aggregates Using Petrographic Microscope
4.1.2. Petrographic Features of Aggregates Using GIS Method
4.1.3. Microtopographic Characteristics of the Tested Sandstones
4.1.4. Physicomechanical Properties of Aggregates
4.2. Concrete Test Results
4.2.1. Uniaxial Compressive Strength of Concrete
4.2.2. Petrographic Characteristics of the Investigated Concretes
5. Discussion
5.1. The Impact of Petrographic Characteristics on the Sandstone Aggregate Properties and on the Quality of Concrete
5.2. A Potential Scenario for Storage of CO2 in Sandstones from Klepa Nafpaktias
6. Conclusions
- Three groups of sandstones were detected according to their petrographic features regarding the grain size (coarse, medium and fine-grained size).
- The above classification of rocks was retained in their physicomechanical and physicochemical properties as well as in the final strength of the produced concrete specimens.
- The petrographic observation of thin sections of the concrete specimens combined with the results of their mechanical strength revealed that the studied sandstones are suitable for concrete aggregates (Groups I–III) except one coarse-grained sample (K.L9 (Group I)) which contains intense amount of carbonate fossils presenting lower concrete strength than the standard states.
- The proposed ratio C/A (crystals/mm2) seems to influence the aggregate properties which constitute critical factors for the final concrete strength, presenting the more fine-grained sandstones as the most suitable for concrete aggregates.
- The petrographic characteristics of the sandstones from Klepa Nafpaktias and their porosity values reveal that the coarse-grained samples (Group I) is more capable for potential CO2 storage.
- Preliminary calculations suggest that a potential pilot project can store an amount of up to 18 × 105 tons CO2. The size of the sandstones formation provides the necessary basis for examining the deployment of an even larger scale pilot test that suggested from the present study.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Lampropoulou, P.; Tsikouras, B.; Rigopoulos, I.; Hatzipanagiotou, K. Petrographic and Mechanical Characteristics of Concrete Produced by Different Type of Recycled Materials. Geosciences 2019, 9, 264. [Google Scholar] [CrossRef] [Green Version]
- Farzadnia, N.; Abang, A.A.A.; Demirboga, R.; Anwar, M.P. Effect of halloysite nanoclay on mechanical properties, thermal behavior and microstructure of cement mortars. Cem. Concr. Res. 2013, 48, 97–104. [Google Scholar] [CrossRef]
- Tamanna, N.; Sutan, N.M.; Lee, D.T.C. Utilization of Waste Glass in Concrete. In Proceedings of the 6th International Engineering Conference, Energy and Environment (ENCON), 1–4 July; Research Publishing: Wuhan, China, 2013. [Google Scholar]
- Castro, S.; Brito, J. Evaluation of the durability of concrete made with crushed glass aggregates. J. Clean. Prod. 2013, 41, 7–14. [Google Scholar] [CrossRef]
- Abdallah, S.; Fan, M. Characteristics of concrete with waste glass as fine aggregate replacement. J. Eng. Technol. Res. 2014, 2, 11–17. [Google Scholar]
- Jani, W.; Hogland, W. Waste glass in the production of cement and concrete—A review. J. Envir. Chem. Eng. 2014, 2, 1767–1775. [Google Scholar] [CrossRef]
- Meng, Y.; Ling, T.G.; Mo, K.H. Recycling of wastes for value-added applications in concrete blocks: An overview. Resour. Conserv. Recycl. 2018, 138, 298–312. [Google Scholar] [CrossRef]
- Poon, C.S.; Chan, D. Paving blocks made with recycled concrete aggregate and crushed clay brick. Constr. Build. Mater. 2006, 20, 569–577. [Google Scholar] [CrossRef]
- Vanitha, S.; Natrajan, V.; Prada, M. Utilization of waste plastics as a partial replacement of coarse aggregate in concrete blocks. Indian J. Sci. Technol. 2015, 8, 256–268. [Google Scholar] [CrossRef]
- Jackson, N. Civil Engineering Materials; Macmillan Press Ltd.: London, UK, 1981. [Google Scholar]
- LaLonde, W.S.; Janes, M.F. Concrete Engineering Handbook; Library of Congress: New York, NY, USA, 1961. [Google Scholar]
- US Concrete Industry Report; Library of Congress: New York, NY, USA, 2001.
- Neville, A.M. Properties of Concrete, ELSB, 5th ed.; Pearson Education Publishing Ltd.: London, UK, 2005. [Google Scholar]
- Taylor, G.D. Materials in Construction, 2nd ed.; Longman Group Ltd., Longman House, Burnt Mill: Harlow, UK, 1994. [Google Scholar]
- Neville, A.M. Properties of Concrete, 4th ed.; Pitman: London, UK, 1995. [Google Scholar]
- Al-Oraimi, S.K.; Taha, R.; Hassan, H.F. The effect of the mineralogy of coarse aggregate on the mechanical properties of high-strength concrete. Constr. Build. Mater. 2006, 20, 499–503. [Google Scholar] [CrossRef]
- Mackechnie, J.R. Shrinkage of concrete containing greywake sandstone aggregate. ACI Mater. J. 2006, 103, 390–396. [Google Scholar]
- Rodgers, M.; Hayes, G.; Healy, M.G. Cyclic loading tests on sandstone and limestone shale aggregates used in unbound forest roads. Constr. Build. Mater. 2009, 23, 2421–2427. [Google Scholar] [CrossRef] [Green Version]
- Verstrynge, E.; Schueremans, L.; Van Gement, D. Creep and failure prediction of diestian ferruginous sandstone: Modelling and repair options. Constr. Build. Mater. 2012, 29, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Gupta, R.C.; Shrivastava, S. Strength, abrasion and permeability studies on cement concrete containing sandstone coarse aggregates. Constr. Build. Mater. 2016, 125, 884–891. [Google Scholar] [CrossRef]
- Yilmaz, M.; Tugrul, A. The effects of different sandstone aggregates on concrete strength. Constr. Build. Mater. 2012, 35, 294–303. [Google Scholar] [CrossRef]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Stamatis, P.M.; Tsikouras, B.; Papoulis, D.; Lampropoulou, P.; Hatzipanagiotou, K. The Influence of Alteration of Aggregates on the Quality of the Concrete: A Case Study from Serpentinites and Andesites from Central Macedonia (North Greece). Geosciences 2018, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Stamatis, P.M.; Lampropoulou, P.; Tsikouras, B.; Hatzipanagiotou, K. The Effect of Petrographic Characteristics and Physicomechanical Properties of Aggregates on the Quality of Concrete. Minerals 2018, 8, 577. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Onasch, M.C.; Guo, Y. GIS-based detection of grain boundaries. J. Struct. Geol. 2008, 30, 431–443. [Google Scholar] [CrossRef]
- Barraud, J. The use of watershed segmentation and GIS software for textural analysis of thin sections. J. Volcanol. Geotherm. Res. 2006, 154, 17–33. [Google Scholar] [CrossRef]
- Fernandez, F.J.; Menendez-Duarte, R.; Aller, J.; Bastida, F. Application of geographical information systems to shape-fabric analysis. In High-Strain Zones: Structure and Physical Properties, 245; Bruhn, D., Burlini, L., Eds.; Geological Society of London Special Publication: London, UK, 2005; pp. 409–420. [Google Scholar]
- Tarquini, S.; Favalli, M. A Microscopic Information System (MIS) to assist in petrographic analysis. Comput. Geosci. 2010, 36, 665–674. [Google Scholar] [CrossRef] [Green Version]
- Becattini, V.; Motmans, T.; Zappone, A.; Madonna, C.; Haselbacher, A.; Steinfeld, A. Experimental investigation of the thermal and mechanical stability of rocks for high-temperature thermal-energy storage. Appl. Energy 2017, 203, 373–389. [Google Scholar] [CrossRef]
- Kuravi, S.; Trahan, J.; Goswami, D.Y.; Rahman, M.M.; Stefanakos, E.K. Thermal energy storage technologies and systems for concentrating solar power plants. Prog. Energy Combust. Sci. 2013, 39, 285–319. [Google Scholar] [CrossRef]
- Khare, S.; Dell’ Amico, M.; Knight, C.; Mc Garry, S. Selection of materials for hightemperature sensible energy storage. Solar Energy Mater. Solar Cells 2013, 115, 114–122. [Google Scholar] [CrossRef]
- Allen, K.G.; von Backström, T.W.; Kröger, D.G.; Kisters, A.F.M. Rock bed storage for solar thermal power plants: Rock characteristics, suitability, and availability. Solar Energy Mater. Solar Cells 2014, 126, 170–183. [Google Scholar] [CrossRef]
- Tiskatine, R.; Eddemani, A.; Gourdo, L.; Abnay, B.; Ihlal, A.; Aharoune, A.; Bouirden, L. Experimental evaluation of thermo-mechanical performances of candidate rocks for use in high temperature thermal storage. Appl. Energy 2016, 171, 243–255. [Google Scholar] [CrossRef]
- Karakitsios, V.; Tzortzaki, E.; Giraud, F.; Pasadakis, N. First evidence for the early Aptian Oceanic Anoxic Event (OAE1a) from the Western margin of the Pindos Ocean (NW Greece). Geobios 2018, 51, 187–210. [Google Scholar] [CrossRef]
- Robertson, A.H.F.; Karamata, S. The role of subduction-accretion processes in the tectonic evolution of the Mesozoic Tethys in Serbia. Tectonophysics 1994, 234, 73–94. [Google Scholar] [CrossRef]
- Aubouin, J.; Bonneau, M.; Davidson, G.J.; Leboulenger, P.; Matesko, S.; Zambetakis, A. Esquisse structurale de l’Arc egeen externe: Des Dinarides aux Taurides. Bull. Soc. Géol. Fr. 1976, 7, 327–336. [Google Scholar] [CrossRef]
- Bernoulli, D.; De Graciansky, P.C.D.; Monod, O. The extension of the Lycian Nappes (SW Turkey) into the Southeastern Aegean Islands. Eclogae Geol. Helv. 1974, 67, 39–90. [Google Scholar]
- Argyriadis, I.; De Graciansky, P.C.; Marcoux, J.; Ricou, L.E. The opening of the Mesozoic Tethys between Eurasia and Arabia-Africa. In Proceedings of the Geologie des Chaınes Alpines Issues de la Tethys, 26th International Geological Congress, Colloque C5, Paris, France, 7–17 July 1980; Aubouin, J., Debelmas, J., Latreille, M., Eds.; Bureau de Recherches Geologiques et Minieres Memoire: Paris, France, 1980; Volume 115, pp. 199–214. [Google Scholar]
- Kafousia, N.; Karakitsios, V.; Jenkyns, H.C.; Mattiolis, E. A global event with a regional character: The Early Toarcian Oceanic Anoxic Event in the Pindos Ocean (northern Peloponnese, Greece). Geol. Mag. 2011, 148, 619–631. [Google Scholar] [CrossRef] [Green Version]
- Fleury, J.J. Les zones de Gavrovo-Tripolitza et du Pinde-Olonos (Grece continentale et Peloponese du nord) Evolution d’une plate-forme et d’un basin dans leur cadre alpin. Soc. Geol. Nord 1980, 4, 1–473. [Google Scholar]
- De Wever, P.; Baudin, F. Palaeogeography of radiolarite and organic-rich deposits in Mesozoic Tethys. Geol. Rundsch. 1996, 85, 310–326. [Google Scholar] [CrossRef]
- Clift, P.D. The collision tectonics of the southern Greek Neotethys. Geol. Rundsch. 1992, 81, 669–679. [Google Scholar] [CrossRef]
- Degnan, P.J.; Robertson, A.H.F. Mesozoic–early Tertiary passive margin evolution of the Pindos Ocean (NW Peloponnese Greece). Sediment. Geol. 1998, 117, 33–70. [Google Scholar] [CrossRef]
- Pe-Piper, G. The nature of Triassic extension-related magmatism in Greece: Evidence from Nd and Pb isotope geochemistry. Geol. Mag. 1998, 135, 331–348. [Google Scholar] [CrossRef]
- Neumann, P.; Zacher, W. The Cretaceous sedimentary history of the Pindos Basin Greece. Int. J. Earth Sci. 2004, 93, 119–131. [Google Scholar] [CrossRef]
- Jones, G.; Robertson, A.H.F.; Cann, J.R. Genesis and emplacement of the suprasubduction zone Pindos Ophiolite, Northwestern Greece. In Ophiolite Genesis and Evolution of the Oceanic Lithosphere; Peters, T., Nicolas, A., Coleman, S., Eds.; Sultanate of Oman Ministry of Petroleum and Minerals: Muscat, Oman, 1991. [Google Scholar]
- Konstantopoulos, P.A.; Zelilidis, A. Sedimentation of submarine fan deposits in the Pindos foreland basin, from late Eocene to early Oligocene, west Peloponnesus peninsula, SW Greece. Geol. J. 2013, 48, 335–362. [Google Scholar] [CrossRef]
- Faupl, P.; Pavlopoulos, A.; Migiros, G. On the provenance of flysch deposits in the External Hellenides of mainland Greece: Results from heavy mineral studies. Geol. Mag. 1999, 135, 412–442. [Google Scholar] [CrossRef]
- Vakalas, I. Evolution of Foreland Basins in Western Greece. Ph.D. Thesis, University of Patras, Patras, Greece, 2004. [Google Scholar]
- Loftus, D.L.; Matarangas, D.; Zindros, G.; Katsikatsos, G. Geological Map of Greece, Klepa Sheet, 1:50,000; IGME: Athens, Greece, 1984. [Google Scholar]
- Part 1: Composition, Specifications and Conformity Criteria for Common Cements; EN 197-1; European Standard: Warsaw, Poland, 2011.
- Part 3: Procedure and Terminology for Simplified Petrographic Description; EN 932; European Standard: Warsaw, Poland, 1996.
- Methods for Sampling and Testing of Mineral Aggregates, Sands and Fillers, Part 1: Methods for Determination of Particle Size and Shape; BS 812; British Standard Institution: London, UK, 1975.
- ISRM Suggested Methods. Rock Characterization Testing and Monitoring; Brown, E., Ed.; Pergamon Press: Oxford, UK, 1981. [Google Scholar]
- EN 1367-2. Tests for Thermal and Weathering Properties of Aggregates—Part 2: Magnesium Sulfate Test; European Committee for Standardization: Brussels, Belgium, 1999. [Google Scholar]
- EN 1097-6. Tests for Mechanical and Physical Properties of Aggregates—Part 6: Determination of Particle Density and Water Absorption; European Committee for Standardization: Brussels, Belgium, 2000. [Google Scholar]
- ASTM C-131. Resistance to Abrasion of Small-Size Coarse Aggregate by Use of the Los Angeles Machine; American Society for Testing and Materials: Philadelphia, PA, USA, 1989. [Google Scholar]
- Standard Test Method for Unconfined Compressive Strength of Intact Rock Core Specimens; ASTM D 2938-95; American Society for Testing and Materials: West Conshohocken, PA, USA, 2002.
- Standard for Selecting Proportions for Normal, Heavyweight and Mass Concrete; ACI-211.1-91; American Concrete Institute: Farmington Hills, MI, USA, 2002.
- Part 3: Testing Hardened Concrete. Compressive Strength of Test Specimens; British Standard Institution: London, UK, 2009; BS EN 12390.
- Standard Practice for Petrographic Examination of Hardened Concrete; ASTM C856; American Society for Testing and Materials: West Conshohocken, PA, USA, 2017.
- Rigopoulos, I.; Tsikouras, B.; Pomonis, P.; Hatzipanagiotou, K. The impact of petrographic characteristics on the engineering properties of ultrabasic rocks from northern and central Greece. Q. J. Eng. Geol. Hydrogeol. 2012, 45, 423–433. [Google Scholar] [CrossRef]
- Smith, M.R.; Collis, L. Aggregates: Sand, Gravel and Crushed Rock Aggregates for Construction Purposes; Spec. Publ. 17; The Geological Society: London, UK, 2001. [Google Scholar]
- Hartley, A. A review of the geological factors influencing the mechanical properties of road surface aggregates. Q. J. Eng. Geol. 1974, 7, 69–100. [Google Scholar] [CrossRef]
- Barttli, B. The influence of geological factors on the mechanical properties of basic igneous rocks used as road surface aggregates. Eng. Geol. 1992, 33, 31–44. [Google Scholar] [CrossRef]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Lampropoulou, P.; Koutsopoulou, E.; Papoulis, D.; Tsikouras, B.; Hatzipanagiotou, K. The Impact of Secondary Phyllosilicate Minerals on the Engineering Properties of Various Igneous Aggregates from Greece. Minerals 2018, 8, 329. [Google Scholar] [CrossRef] [Green Version]
- Turgul, A.; Zarif, I.H. Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng. Geol. 1999, 51, 303–317. [Google Scholar]
- Rigopoulos, I.; Tsikouras, B.; Pomonis, P.; Hatzipanagiotou, K. Correlations between petrographic and geometrical properties of ophiolitic aggregates from Greece. Bull. Eng. Geol. Environ. 2014, 73, 1–12. [Google Scholar] [CrossRef]
- Escartin, J.; Hirth, G.; Evans, B. Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere. Geology 2001, 29, 1023–1026. [Google Scholar] [CrossRef]
- Giannakopoulou, P.P.; Petrounias, P.; Rogkala, A.; Tsikouras, B.; Stamatis, P.M.; Pomonis, P.; Hatzipanagiotou, K. The influence of the mineralogical composition of ultramafic rocks on their engineering performance: A case study from the Veria-Naousa and Gerania ophiolite complexes (Greece). Geosciences 2018, 8, 251. [Google Scholar] [CrossRef] [Green Version]
- Giannakopoulou, P.P.; Petrounias, P.; Tsikouras, B.; Kalaitzidis, S.; Rogkala, A.; Hatzipanagiotou, K.; Tombros, S.F. Using Factor Analysis to Determine the Interrelationships between the Engineering Properties of Aggregates from Igneous Rocks in Greece. Minerals 2018, 8, 580. [Google Scholar] [CrossRef] [Green Version]
- Koukouzas, N.; Ziogou, F.; Gemeni, V. Preliminary assessment of CO2 geological storage opportunities in Greece. Int. J. Greenh. Gas Con. 2009, 3, 502–513. [Google Scholar] [CrossRef]
- Tassianas, A.; Koukouzas, N. CO2 Storage Capacity Estimate in the Lithology of the Mesohellenic Trough, Greece. Energy Procedia 2016, 86, 334–341. [Google Scholar] [CrossRef] [Green Version]
- Koukouzas, N.; Kypritidou, Z.; Purser, G.; Rochelle, C.A.; Vasilatos, C.; Tsoukalas, N. Assessment of the impact of CO2 storage in sandstone formations by experimental studies and geochemical modeling: The case of the Mesohellenic Trough, NW Greece. Int. J. Greenh. Gas Con. 2018, 71, 116–132. [Google Scholar] [CrossRef]
- Shafeen, A.; Croiset, E.; Douglas, P.L.; Chatzis, I. CO2 sequestration in Ontario, Canada. Part I: Storage evaluation of potential reservoirs. Energy Convers. Manag. 2004, 45, 2645–2659. [Google Scholar] [CrossRef]
- Jin, C.; Liu, L.; Li, Y.; Zeng, R. Capacity assessment of CO2 storage in deep saline aquifers by mineral trapping and the implications for Songliao Basin, Northeast China. Energy Sci. Eng. 2017, 5, 81–89. [Google Scholar] [CrossRef]
- Ryoji, S.; Thomas, L.D. Experiment al study on water-rock interactions during CO2 flooding in the Tensleep Formation, Wyoming, USA. Appl. Geochem. 2000, 15, 265–279. [Google Scholar]
- Robert, J.R.; Tamer, K.; James, L.P. Experiment al investigation of CO2- brine-rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers. Fuel Process. Technol. 2005, 86, 1581–1597. [Google Scholar]
- Ryzhenko, B.N. Genesis of dawsonite mineralization: Thermo-dynamic analysis and alt ernative. Geochem. Int. 2006, 44, 835–840. [Google Scholar] [CrossRef]
- Spycher, N.; Pruess, K. CO2-H2O Mixtures in the Geological Sequestration of CO2. II. Partitioning in Chloride Brines at 12–100 °C and up to 600 bar. Geochim. Cosmochim. Acta 2005, 69, 3309–3320. [Google Scholar] [CrossRef]
Modal Composition | Ratio | |||||||
---|---|---|---|---|---|---|---|---|
Samples | Quartz | K-Feldspars | Plagioclase | Calcite | Muscovite | Total Cement | C/A | |
Group I | K.L5 | 24.96 | 29.20 | 0.53 | 1.43 | 1.60 | 42.28 | 11.61 |
K.L9 | 26.00 | 28.34 | 0.51 | 1.43 | 1.58 | 42.14 | 11.59 | |
Group II | K.L1 | 25.56 | 16.82 | 0.50 | 8.40 | 1.37 | 47.35 | 21.40 |
K.L3 | 25.52 | 16.81 | 0.65 | 8.05 | 1.33 | 47.64 | 20.80 | |
Group III | K.L7 | 29.50 | 6.64 | 0.20 | 2.46 | 4.12 | 57.08 | 56.50 |
K.L10 | 29.10 | 6.62 | 0.26 | 2.44 | 1.41 | 57.44 | 55.70 |
Samples | Lithotype | Particle Size | Los Angeles (LA %) | Uniaxial Compressive Strength of Rocks (UCS MPa) | nt (%) | Wa (%) | S (%) |
---|---|---|---|---|---|---|---|
KL.1 | Sandstone | Medium grained (Group II) | 20.0 | 115.0 | 4.50 | 2.10 | 20.00 |
KL.2 | Sandstone | Medium grained (Group II) | 21.0 | 105.0 | 4.80 | 1.80 | 18.00 |
KL.3 | Sandstone | Medium grained (Group II) | 22.0 | 89.0 | 5.30 | 2.21 | 19.00 |
KL.4 | Sandstone | Fine grained (Group III) | 16.0 | 112.0 | 3.50 | 1.55 | 13.00 |
KL.5 | Sandstone | Coarse grained (Group I) | 29.0 | 77.0 | 9.50 | 3.30 | 48.00 |
KL.6 | Sandstone | Medium grained (Group II) | 19.0 | 105.0 | 3.70 | 2.18 | 17.00 |
KL.7 | Sandstone | Fine grained (Group III) | 13.0 | 115.0 | 2.30 | 0.90 | 15.00 |
KL.8 | Sandstone | Fine grained (Group III) | 15.0 | 113.0 | 2.90 | 1.50 | 12.00 |
KL.9 | Sandstone | Coarse grained (Group I) | 33.0 | 75.0 | 19.50 | 2.80 | 38.00 |
KL.10 | Sandstone | Fine grained (Group III) | 15.0 | 112.0 | 3.10 | 1.60 | 20.00 |
Samples | Lithotype | Particle Size | Uniaxial Compressive Strength of Concrete Specimens (UCScon (MPa)) |
---|---|---|---|
KL.1 | Sandstone | Medium grained (Group II) | 31.0 |
KL.2 | Sandstone | Medium grained (Group II) | 28.0 |
KL.3 | Sandstone | Medium grained (Group II) | 26.0 |
KL.4 | Sandstone | Fine grained (Group III) | 30.0 |
KL.5 | Sandstone | Coarse grained (Group I) | 25.0 |
KL.6 | Sandstone | Medium grained (Group II) | 27.0 |
KL.7 | Sandstone | Fine grained (Group III) | 32.0 |
KL.8 | Sandstone | Fine grained (Group III) | 32.0 |
KL.9 | Sandstone | Coarse grained (Group I) | 24.0 |
KL.10 | Sandstone | Fine grained (Group III) | 31.0 |
Diagram | R2 | Equation |
---|---|---|
6a | 0.97 | nt = 0.658 × 100.0972LA |
6b | 0.74 | wa = −0.0381UCS + 5.8771 |
6c | 0.86 | UCS = −2.2626LA + 147.73 |
6d | 0.76 | S = 14.776wa − 7.4628 |
7a | 0.72 | C/A = 1.1038 × 100.0317UCS |
7b | 0.90 | C/A = 162.49 × 10−0.087LA |
7c | 0.71 | C/A = −22.81ln(nt) + 68.975 |
8a | 0.57 | UCScon = −0.4369nt + 31.182 |
8b | 0.86 | UCScon = 0.1783UCS + 10.449 |
8c | 0.73 | UCScon = −3.7077wa + 35.993 |
8d | 0.82 | UCScon = −9.138ln(LA) + 55.735 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Kalpogiannaki, M.; Koutsovitis, P.; Damoulianou, M.-E.; Koukouzas, N. Petrographic Characteristics of Sandstones as a Basis to Evaluate Their Suitability in Construction and Energy Storage Applications. A Case Study from Klepa Nafpaktias (Central Western Greece). Energies 2020, 13, 1119. https://doi.org/10.3390/en13051119
Petrounias P, Giannakopoulou PP, Rogkala A, Kalpogiannaki M, Koutsovitis P, Damoulianou M-E, Koukouzas N. Petrographic Characteristics of Sandstones as a Basis to Evaluate Their Suitability in Construction and Energy Storage Applications. A Case Study from Klepa Nafpaktias (Central Western Greece). Energies. 2020; 13(5):1119. https://doi.org/10.3390/en13051119
Chicago/Turabian StylePetrounias, Petros, Panagiota P. Giannakopoulou, Aikaterini Rogkala, Maria Kalpogiannaki, Petros Koutsovitis, Maria-Elli Damoulianou, and Nikolaos Koukouzas. 2020. "Petrographic Characteristics of Sandstones as a Basis to Evaluate Their Suitability in Construction and Energy Storage Applications. A Case Study from Klepa Nafpaktias (Central Western Greece)" Energies 13, no. 5: 1119. https://doi.org/10.3390/en13051119
APA StylePetrounias, P., Giannakopoulou, P. P., Rogkala, A., Kalpogiannaki, M., Koutsovitis, P., Damoulianou, M. -E., & Koukouzas, N. (2020). Petrographic Characteristics of Sandstones as a Basis to Evaluate Their Suitability in Construction and Energy Storage Applications. A Case Study from Klepa Nafpaktias (Central Western Greece). Energies, 13(5), 1119. https://doi.org/10.3390/en13051119