Numerical Study of the Effects of the Jet Fan Speed, Heat Release Rate and Aspect Ratio on Smoke Movement in Tunnel Fires
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Jet Fan Speed
2.2. Heat Release Rate
2.3. Smoke Layer Height and Thickness
3. Numerical Analysis
3.1. Computational Domain for Numerical Study
3.2. Numerical Method and Boundary Conditions
3.2.1. Numerical Method
3.2.2. Numerical Condition
3.3. Grid Independence Test
4. Results and Discussion
4.1. Effect of Jet Fan Speed
4.2. Effect of Heat Release Rate
4.3. Effect of Aspect Ratio
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Viegas, J.C. The use of impulse ventilation for smoke control in underground car parks. Tunn. Undergr. Space Technol. 2010, 25, 42–53. [Google Scholar] [CrossRef]
- Vd Giesen, B.J.M.; Penders, S.H.A.; Loomans, M.G.L.C.; Rutten, P.G.S.; Hensen, J.L.M. Modelling and simulation of a jet fan for controlled airflow in large enclosures. Environ. Model. Softw. 2011, 26, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Pei, G.; Pan, J. Numerical study on different series modes of the jet fan in a longitudinal tunnel ventilation system. Math. Probl. Eng. 2014, 2014, 194125. [Google Scholar] [CrossRef]
- Beyer, M.; Sturm, P.J.; Saurwein, M.; Bacher, M. Evaluation of Jet Fan Performance in Tunnels. In Proceedings of the 8th International Conference Tunnel Safety and Ventilation, Graz, Austria, 25–26 April 2016. [Google Scholar]
- Lee, S.R.; Ryou, H.S. An experimental study of the effect of the aspect ratio on the critical velocity in longitudinal ventilation tunnel fires. J. Fire Sci. 2005, 23, 119–138. [Google Scholar] [CrossRef]
- Lönnermark, A.; Ingason, H. The effect of air velocity on heat release rate and fire development during fires in tunnels. Fire Saf. Sci. 2008, 9, 701–712. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.Z.; Fan, C.G.; Ingason, H.; Lönnermark, A.; Ji, J. Effect of cross section and ventilation on heat release rates in tunnel fires. Tunn. Undergr. Space Technol. 2016, 51, 414–423. [Google Scholar] [CrossRef]
- Hu, L.; Ren, F.; Hu, K.; Tang, F.; Lu, K. An experimental study on temperature evolution inside compartment with fire growth and flame ejection through an opening under external wind. Proc. Combust. Inst. 2017, 36, 2955–2962. [Google Scholar] [CrossRef]
- Tang, F.; Li, L.J.; Dong, M.S.; Wang, Q.; Mei, F.Z.; Hu, L.H. Characterization of buoyant flow stratification behaviors by Richardson (Froude) number in a tunnel fire with complex combination of longitudinal ventilation and ceiling extraction. Appl. Therm. Eng. 2017, 110, 1021–1028. [Google Scholar] [CrossRef]
- Qiu, A.; Hu, L.; Chen, L.; Carvel, R.O. Flame extension lengths beneath a confined ceiling induced by fire in a channel with longitudinal air flow. Fire Saf. J. 2018, 97, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Wan, H.; Gao, Z.; Han, J.; Ji, J.; Ye, M.; Zhang, Y. A numerical study on smoke back-layering length and inlet air velocity of fires in an inclined tunnel under natural ventilation with a vertical shaft. Int. J. Therm. Sci. 2019, 138, 293–303. [Google Scholar] [CrossRef]
- Ji, J.; Tan, T.; Gao, Z.; Wan, H.; Zhu, J.; Ding, L. Numerical investigation on the influence of length–width ratio of fire source on the smoke movement and temperature distribution in tunnel fires. Fire Technol. 2019, 55, 963–979. [Google Scholar] [CrossRef]
- Khattri, S.K.; Log, T.; Kraaijeveld, A. Tunnel Fire Dynamics as a Function of Longitudinal Ventilation Air Oxygen Content. Sustainability 2019, 11, 203. [Google Scholar] [CrossRef] [Green Version]
- Khattri, S.K. From small-scale tunnel fire simulations to predicting fire dynamics in realistic tunnels. Tunn. Undergr. Space Technol. 2017, 61, 198–204. [Google Scholar] [CrossRef]
- Ji, J.; Guo, F.; Gao, Z.; Zhu, J. Effects of ambient pressure on transport characteristics of thermal-driven smoke flow in a tunnel. Int. J. Therm. Sci. 2018, 125, 210–217. [Google Scholar] [CrossRef]
- Gao, Z.; Jie, J.; Wan, H.; Zhu, J.; Sun, J. Experimental investigation on transverse ceiling flame length and temperature distribution of sidewall confined tunnel fire. Fire Saf. J. 2017, 91, 371–379. [Google Scholar] [CrossRef]
- Carvel, R.O.; Beard, A.N.; Jowitt, P.W.; Drysdale, D.D. Fire size and fire spread in tunnels with longitudinal ventilation systems. J. Fire Sci. 2005, 23, 485–518. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, J.H.; Kim, K.Y.; Yoon, J.Y.; Yang, S.H.; Choi, Y.S. High-efficiency design of a tunnel ventilation jet fan through numerical optimization techniques. J. Mech. Sci. Technol. 2012, 26, 1793–1800. [Google Scholar] [CrossRef]
- Lee, S.R.; Ryou, H.S. A numerical study on smoke movement in longitudinal ventilation tunnel fires for different aspect ratio. Build. Environ. 2006, 41, 719–725. [Google Scholar] [CrossRef]
- Janssens, M.; Tran, H.C. Data reduction of room tests for zone model validation. J. Fire Sci. 1992, 10, 528–555. [Google Scholar] [CrossRef]
- Muckett, M.; Furness, A. Introduction to Fire Safety Management; Routledge: Abingdon upon Thames, UK, 2007. [Google Scholar]
- Šekularac, M.B. Experimental determination of tunnel ventilation axial ducted fan performance. Therm. Sci. 2016, 20, 209–221. [Google Scholar] [CrossRef]
- Dahm, W.J.A.; Dimotakis, P.E. Measurements of entrainment and mixing in turbulent jets. AIAA J. 1987, 25, 1216–1223. [Google Scholar] [CrossRef] [Green Version]
- Lönnermark, A.; Ingason, H. Fire Spread in Large Industrial Premises and Warehouse; SP Swedish National Testing and Research Institute: Borås, Sweden, 2005. [Google Scholar]
- Grant, G.; Drysdale, D. Numerical modelling of early flame spread in warehouse fires. Fire Saf. J. 1995, 24, 247–278. [Google Scholar] [CrossRef]
- Drysdale, D. An Introduction to Fire Dynamics; John Wiley and Sons: Hoboken, NJ, USA, 1986. [Google Scholar]
- Jun, Y.J. Deduction of Key Items and Task Improvement for Quality Test of Curtain Wall. Master’s Thesis, University of Seoul, Seoul, Korea, 2012. [Google Scholar]
- Kweon, O.S.; Yoo, Y.H.; Kim, H.Y.; Kim, J.H. Real Scale Experiment for Assessing Fire Model of Office Compartment. J. Korean Soc. Hazard Mitig. 2012, 12, 61–65. [Google Scholar] [CrossRef]
- Lee, J.S.; Yim, H.C.; Kim, H.J.; Kim, H.Y.; Cho, B.H. An Experimental Study on the Evaluation of Fire Resistance Performance of Curtain-Wall. J. Archit. Inst. Korea 2011, 27, 141–148. [Google Scholar]
- Mowrer, F.W. Window Breakage Induced by Exterior Fires. In Proceedings of the Second International Conference on Fire Research and Engineering (ICFRE2), Maui, HI, USA, 3–9 May 1998; pp. 404–415. [Google Scholar]
- Pagni, P.J.; Joshi, A.A. Glass Breaking in Fires. Fire Saf. Sci. 1991, 3, 791–802. [Google Scholar] [CrossRef]
- Rahkonen, O.K. Breaking of Window Glass Close to Fire. Fire Mater. 1988, 12, 60–69. [Google Scholar]
- Roh, J.S.; Yang, S.S.; Ryou, H.S. Tunnel fires: Experiments on Critical Velocity and Burning Rate in Pool Fire During Longitudinal Ventilation. J. Fire Sci. 2005, 25, 161–176. [Google Scholar] [CrossRef]
- Shields, T.J.; Silcock, G.W.H.; Flood, M. Performance of a Single Glazing Assembly Exposed to a fire in the Centre of and Enclosure. Fire Mater. 2002, 26, 51–75. [Google Scholar] [CrossRef]
- Shields, T.J.; Silcock, G.W.H.; Flood, M. Behavior of Double Glazing in Corner Fires. Fire Technol. 2005, 41, 37–65. [Google Scholar] [CrossRef]
- Wu, C.W.; Lin, T.H.; Lei, M.Y.; Chung, T.H.; Huang, C.C.; Chiang, W.T. Fire Resistance Tests of a Glass Pane with Down-flowing Water Film. J. Chin. Inst. Eng. 2008, 31, 737–744. [Google Scholar] [CrossRef]
- Xie, Q.; Zhang, H.; Wan, Y.; Zhan, Q.; Cheng, X. Full-scale experimental study on crack and fallout of toughened glass with different thicknesses. Fire Mater. 2008, 32, 293–306. [Google Scholar] [CrossRef]
- Awbi, H.B. Ventilation of Buildings, 2nd ed.; Spon Press: London, UK, 2003. [Google Scholar]
- Baturin, V.V. Fundamentals of Industrial Ventilation; Pergamon: Oxford, UK, 1972. [Google Scholar]
- Kümmel, W. Technische Strömungsmechanik, 3rd ed.; Technical Report; Teubner, B.G., Ed.; Teubner: Wiesbaden, Germany, 2007; p. 25. [Google Scholar]
- Park, Y.; Ryu, J.; Ryou, H.S. Experimental Study on the Fire-Spreading Characteristics and Heat Release Rates of Burning Vehicles Using a Large-Scale Calorimeter. Energies 2019, 12, 1465. [Google Scholar] [CrossRef] [Green Version]
- Cooper, L.Y.; Harkleroad, M.; Quintiere, J.; Rinkinen, W. An experimental study of upper hot layer stratification in full-scale multiroom fire scenarios. J. Heat Transfer 1982, 104, 741–749. [Google Scholar] [CrossRef]
- He, Y.; Fernando, A.; Luo, M. Determination of interface height from measured parameter profile in enclosure fire experiment. Fire Saf. J. 1998, 31, 19–38. [Google Scholar] [CrossRef]
- Kevin, M.; Simo, H.; Jason, F. Fire dynamics simulator (version 5) technical reference guide. NIST Spec. Publ. 2007, 1018, 5. [Google Scholar]
- Oka, Y.; Oka, H. Velocity and temperature attenuation of a ceiling-jet along a horizontal tunnel with a flat ceiling and natural ventilation. Tunn. Undergr. Space Technol. 2016, 56, 79–89. [Google Scholar] [CrossRef]
Case | HRR (kW) | Jet Fan Velocity (m/s) | Aspect Ratio |
---|---|---|---|
1 | 3896 | 25 | 0.6 |
2 | 3896 | 18.75 | 0.6 |
3 | 3896 | 12.5 | 0.6 |
4 | 3896 | 6.25 | 0.6 |
5 | 6000 | 25 | 0.6 |
6 | 6000 | 12.5 | 0.6 |
7 | 16,000 | 25 | 0.6 |
8 | 16,000 | 12.5 | 0.6 |
9 | 3896 | 25 | 1 |
10 | 3896 | 25 | 1.5 |
11 | 3896 | 12.5 | 1 |
12 | 3896 | 12.5 | 1.5 |
13 | 3896 | 6.25 | 1 |
14 | 3896 | 6.25 | 1.5 |
15 | 6000 | 18.75 | 0.6 |
16 | 6000 | 6.25 | 0.6 |
17 | 16,000 | 18.75 | 0.6 |
18 | 16,000 | 6.25 | 0.6 |
19 | 6000 | 25 | 1 |
20 | 6000 | 25 | 1.5 |
21 | 16,000 | 25 | 1 |
22 | 16,000 | 25 | 1.5 |
23 | 3896 | 18.75 | 1 |
24 | 3896 | 18.75 | 1.5 |
Physics | Fluid Flow |
---|---|
Gauge pressure = 0 Pa | |
Cell zone | x, y, z velocity = 0 m/s |
Temperature: 293.15 K |
Case Index | Number of Grid Cells |
---|---|
Case 1 | 2,300,000 |
Case 2 | 1,275,000 |
Case 3 | 915,000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thien Khieu, H.; Lee, Y.M.; Kim, J.T.; Ryou, H.S. Numerical Study of the Effects of the Jet Fan Speed, Heat Release Rate and Aspect Ratio on Smoke Movement in Tunnel Fires. Energies 2020, 13, 1206. https://doi.org/10.3390/en13051206
Thien Khieu H, Lee YM, Kim JT, Ryou HS. Numerical Study of the Effects of the Jet Fan Speed, Heat Release Rate and Aspect Ratio on Smoke Movement in Tunnel Fires. Energies. 2020; 13(5):1206. https://doi.org/10.3390/en13051206
Chicago/Turabian StyleThien Khieu, Ha, Young Man Lee, Ji Tae Kim, and Hong Sun Ryou. 2020. "Numerical Study of the Effects of the Jet Fan Speed, Heat Release Rate and Aspect Ratio on Smoke Movement in Tunnel Fires" Energies 13, no. 5: 1206. https://doi.org/10.3390/en13051206
APA StyleThien Khieu, H., Lee, Y. M., Kim, J. T., & Ryou, H. S. (2020). Numerical Study of the Effects of the Jet Fan Speed, Heat Release Rate and Aspect Ratio on Smoke Movement in Tunnel Fires. Energies, 13(5), 1206. https://doi.org/10.3390/en13051206