Decision Support System for the Production of Miscanthus and Willow Briquettes
Abstract
:1. Introduction
- Evaluation of energy and economic benefits of power to gas/heat technologies [35].
- The renewable energy management (a small scale photovoltaic energy production) based on the existing geographic information systems [36].
- Achieving energy balance in a low-voltage microgrid with RES (photovoltaic panels and wind turbines) [37].
- Supplementing the selection of optimal sites for grid-connected photovoltaic power plants using an environmental DSS [38].
- Setting priorities regarding the selection of bioenergy home heating sources in Southern Europe (DSS uses MCDA—multicriteria decision analysis—methods) [39].
2. Materials and Methods
2.1. Testing the Briquetting Process
2.2. Developing ANN Models
- For the precomminution process and the milling process:
- Energy consumption,
- Bulk density,
- Granulometric composition of the comminuted and the milled material (share of individual fractions).
- For the briquetting process:
- Energy consumption,
- Specific density,
- Briquette durability.
2.3. Performing Simulation Experiments and Creating A Database
- The production of briquettes from Miscanthus and willow proceeds in three stages continuously—the material passes through subsequent devices without interoperational storage.
- The moisture content decreases by 2% at every stage of production.
- During the simulation, the humidity of the chipped material varied from 13% to 21%.
- Precomminution allows one to obtain chopped straw with a theoretical length of 10 and 20 mm.
- Milling is carried out in one step—only one sieve (sieve diameters: 15, 10 and 4 mm).
- Briquetting takes place at an adjustable pressure in the range of 20–56 MPa, every 2 MPa.
2.4. Developing the Inference Module for the Proposed DSS
- Application in web technology,
- Responsive work mode,
- The ability to generate, modify and save reports,
- The ability to add more energy crops,
- Modular nature of the application,
- Expandable.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ioannou, K.; Tsantopoulos, G.; Arabatzis, G.; Andreopoulou, Z.; Zafeiriou, E. A Spatial Decision Support System Framework for the Evaluation of Biomass Energy Production Locations: Case Study in the Regional Unit of Drama, Greece. Sustainability 2018, 10, 531. [Google Scholar] [CrossRef] [Green Version]
- Brunerová, A.; Roubík, H.; Brožek, M. Bamboo fiber and sugarcane skin as a bio-briquette fuel. Energies 2018, 11, 2186. [Google Scholar] [CrossRef] [Green Version]
- Kozina, T.; Ovcharuk, O.; Trach, I.; Levytska, V.; Ovcharuk, O.; Hutsol, T.; Mudryk, K.; Jewiarz, M.; Wrobel, M.; Dziedzic, K. Spread Mustard and Prospects for Biofuels. In Renewable Energy Sources: Engineering, Technology, Innovation; Mudryk, K., Werle, S., Eds.; Springer Proceedings in Energy; Springer: Berlin/Heidelberg, Germany, 2018; pp. 791–799. ISBN 978-3-319-72371-6. [Google Scholar]
- Francik, S.; Knapczyk, A.; Wójcik, A.; Ślipek, Z. Optimisation Methods in Renewable Energy Sources Systems-Current Research Trends. In Renewable Energy Sources: Engineering, Technology, Innovation; Wróbel, M., Jewiarz, M., Szlęk, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 841–852. ISBN 978-3-030-13887-5. [Google Scholar]
- Gentil, L.V.; Vale, A.T. Energy balance and efficiency in wood sawdust briquettes production. Floresta 2015, 45, 281–288. [Google Scholar]
- Knapczyk, A.; Francik, S.; Wojcik, A.; Bednarz, G. Influence of Storing Miscanthus x gigantheus on Its Mechanical and Energetic Properties. In Renewable Energy Sources: Engineering, Technology, Innovation; Mudryk, K., Werle, S., Eds.; Springer Proceedings in Energy; Springer: Berlin/Heidelberg, Germany, 2018; pp. 651–660. [Google Scholar]
- Ivanova, T.; Mendoza Hernández, A.H.; Bradna, J.; Cusimamani, E.F.; Montoya, J.C.G.; Espinel, D.A.A. Assessment of Guava (Psidium guajava L.) wood biomass for briquettes’ production. Forests 2018, 9, 613. [Google Scholar] [CrossRef] [Green Version]
- Brunerová, A.; Roubík, H.; Brožek, M.; Herák, D.; Šleger, V.; Mazancová, J. Potential of tropical fruit waste biomass for production of bio-briquette fuel: Using Indonesia as an example. Energies 2017, 10, 2119. [Google Scholar] [CrossRef] [Green Version]
- Adzic, M.M.; Savic, R.A. Cooling of wood briquettes. Therm. Sci. 2013, 17, 833–838. [Google Scholar] [CrossRef]
- Chaloupková, V.; Ivanova, T.; Ekrt, O.; Kabutey, A.; Herák, D. Determination of particle size and distribution through image-based macroscopic analysis of the structure of biomass briquettes. Energies 2018, 11, 331. [Google Scholar] [CrossRef] [Green Version]
- Moiceanu, G.; Paraschiv, G.; Voicu, G.; Dinca, M.; Negoita, O.; Chitoiu, M.; Tudor, P. Energy consumption at size reduction of lignocellulose biomass for bioenergy. Sustainability 2019, 11, 2477. [Google Scholar] [CrossRef] [Green Version]
- Knapczyk, A.; Francik, S.; Fraczek, J.; Slipek, Z. Analysis of research trends in production of solid biofuels. In Proceedings of the Engineering for Rural Development, Jelgava, Latvia, 22–24 May 2019; Volume 18, pp. 1503–1509. [Google Scholar]
- Hebda, T.; Brzychczyk, B.; Francik, S.; Pedryc, N. Evaluation of suitability of hazelnut shell energy for production of biofuels. Eng. Rural Dev. 2018, 17, 1860–1865. [Google Scholar]
- Mudryk, K.; Wrobel, M.; Jewiarz, M.; Pelczar, G.; Dyjakon, A. Innovative Production Technology of High Quality Pellets for Power Plants. In Renewable Energy Sources: Engineering, Technology, Innovation; Mudryk, K., Werle, S., Eds.; Springer Proceedings in Energy; Springer: Berlin/Heidelberg, Germany, 2018; pp. 701–712. ISBN 978-3-319-72371-6; 978-3-319-72370-9. [Google Scholar]
- Francik, S.; Knapczyk, A.; Francik, R.; Slipek, Z. Analysis of Possible Application of Olive Pomace as Biomass Source. In Renewable Energy Sources: Engineering, Technology, Innovation; Mudryk, K., Werle, S., Eds.; Springer Proceedings in Energy; Springer: Berlin/Heidelberg, Germany, 2018; pp. 583–592. [Google Scholar]
- Ivanyshyn, V.; Nedilska, U.; Khomina, V.; Klymyshena, R.; Hryhoriev, V.; Ovcharuk, O.; Hutsol, T.; Mudryk, K.; Jewiarz, M.; Wrobel, M.; et al. Prospects of Growing Miscanthus as Alternative Source of Biofuel. In Renewable Energy Sources: Engineering, Technology, Innovation; Mudryk, K., Werle, S., Eds.; Springer Proceedings in Energy; Springer: Berlin/Heidelberg, Germany, 2018; pp. 801–812. [Google Scholar]
- Wrobel, M.; Mudryk, K.; Jewiarz, M.; Glowacki, S.; Tulej, W. Characterization of Selected Plant Species in Terms of Energetic Use. In Renewable Energy Sources: Engineering, Technology, Innovation; Mudryk, K., Werle, S., Eds.; Springer Proceedings in Energy; Springer: Berlin/Heidelberg, Germany, 2018; pp. 671–681. [Google Scholar]
- Xu, J.; Chang, S.; Yuan, Z.; Jiang, Y.; Liu, S.; Li, W.; Ma, L. Regionalized techno-economic assessment and policy analysis for biomass molded fuel in China. Energies 2015, 8, 13846–13863. [Google Scholar] [CrossRef] [Green Version]
- Wróbel, M. Assessment of Agglomeration Properties of Biomass-Preliminary Study. In Renewable Energy Sources: Engineering, Technology, Innovation; Wróbel, M., Jewiarz, M., Szlęk, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 411–418. ISBN 978-3-030-13887-5. [Google Scholar]
- Francik, S.; Łapczyńska-Kordon, B.; Francik, R.; Wójcik, A. Modeling and Simulation of Biomass Drying Using Artificial Neural Networks. In Renewable Energy Sources: Engineering, Technology, Innovation.; Mudryk, K., Werle, S., Eds.; Springer International Publishing AG; Springer: Berlin/Heidelberg, Germany, 2018; pp. 571–581. ISBN 9783319723716. [Google Scholar]
- Wrobel, M.; Mudryk, K.; Jewiarz, M.; Knapczyk, A. Impact of raw material properties and agglomeration pressure on selected parmeters of granulates obtained from willow and black locust biomass. Eng. Rural Dev. 2018, 17, 1933–1938. [Google Scholar]
- Safana, A.A.; Abdullah, N.; Sulaiman, F. Bio-char and bio-oil mixture derived from the pyrolysis of mesocarp fibre for briquettes production. J. Oil Palm Res. 2018, 30, 130–140. [Google Scholar]
- Brunerová, A.; Brožek, M.; Šleger, V.; Nováková, A. Energy Balance of Briquette Production from Various Waste Biomass. Sci. Agric. Bohem. 2018, 49, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Krizan, P.; Matus, M.; Soos, L.; Beniak, J. Behavior of Beech Sawdust during Densification into a Solid Biofuel. Energies 2015, 8, 6382–6398. [Google Scholar] [CrossRef] [Green Version]
- Brand, M.A.; Balduino Junior, A.L.; Nones, D.L.; Gaa, A.Z.N. Potential of bamboo species for the production of briquettes [Potencial de espécies de bambu para a produção de briquetes]. Pesqui. Agropecu. Trop. 2019, 49, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.; Ahiduzzaman, M. Assessment of Rice Husk Briquette Fuel Use as an Alternative Source of Woodfuel. Int. J. Renew. Energy Res. 2016, 6, 1601–1611. [Google Scholar]
- Mazurkiewicz, J.; Marczuk, A.; Pochwatka, P.; Kujawa, S. Maize Straw as a Valuable Energetic Material for Biogas Plant Feeding. Materials 2019, 12, 3848. [Google Scholar] [CrossRef] [Green Version]
- Felsberger, A.; Oberegger, B.; Reiner, G. A review of decision support systems for manufacturing systems. In Proceedings of the CEUR Workshop Proceedings, Graz, Austria, 18–19 October 2016; Volume 1793. [Google Scholar]
- Knapczyk, A.; Francik, S.; Wróbel, M.; Jewiarz, M.; Mudryk, K. Decision support systems for scheduling tasks in biosystems engineering. In Proceedings of the E3S Web of Conferences, Czajowice, Poland, 19–20 September 2019; Volume 132. [Google Scholar]
- Hasan, M.S.; Ebrahim, Z.; Wan Mahmood, W.H.; Ab Rahman, M.N. Decision support system classification and its application in manufacturing sector: A review. J. Teknol. 2017, 79, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Behmel, S.; Damour, M.; Ludwig, R.; Rodriguez, M. Optimization of river and lake monitoring programs using a participative approach and an intelligent decision-support system. Appl. Sci. 2019, 9, 4157. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Huang, M.; Zhang, Y.; Liu, J. Decision support system for medical diagnosis utilizing imbalanced clinical data. Appl. Sci. 2018, 8, 1597. [Google Scholar] [CrossRef] [Green Version]
- Teniwut, W.A.; Hasyim, C.L. Decision support system in supply chain: A systematic literature review. Uncertain Supply Chain Manag. 2020, 8, 131–148. [Google Scholar] [CrossRef]
- Kaklauskas, A.; Dzemyda, G.; Tupenaite, L.; Voitau, I.; Kurasova, O.; Naimaviciene, J.; Rassokha, Y.; Kanapeckiene, L. Artificial Neural Network-Based Decision Support System for Development of an Energy-Efficient Built Environment. Energies 2018, 11, 1994. [Google Scholar] [CrossRef] [Green Version]
- Badami, M.; Fambri, G.; Manco, S.; Martino, M.; Damousis, I.G.; Agtzidis, D.; Tzovaras, D. A Decision Support System Tool to Manage the Flexibility in Renewable Energy-Based Power Systems. Energies 2020, 13, 153. [Google Scholar] [CrossRef] [Green Version]
- Besser, A.; Kazak, J.K.; Świąder, M.; Szewrański, S. A Customized Decision Support System for Renewable Energy Application by Housing Association. Sustainability 2019, 11, 4377. [Google Scholar] [CrossRef] [Green Version]
- Stamatescu, I.; Arghira, N.; Fagarasan, I.; Stamatescu, G.; Iliescu, S.S.; Calofir, V. Decision Support System for a Low Voltage. Energies 2017, 10, 118. [Google Scholar] [CrossRef] [Green Version]
- Aran Carrion, J.; Espin Estrella, A.; Aznar Dols, F.; Zamorano Toro, M.; Rodriguez, M.; Ramos Ridao, A. Environmental decision-support systems for evaluating the carrying capacity of land areas: Optimal site selection for grid-connected photovoltaic power plants. Renew. Sustain. Energy Rev. 2008, 12, 2358–2380. [Google Scholar] [CrossRef]
- Martín-Gamboa, M.; Dias, L.C.; Quinteiro, P.; Freire, F.; Arroja, L.; Dias, A.C. Multi-Criteria and Life Cycle Assessment of Wood-Based Bioenergy Alternatives for Residential Heating: A Sustainability Analysis. Energies 2019, 12, 4391. [Google Scholar] [CrossRef] [Green Version]
- Tamouridou, A.A.; Pantazi, E.X.; Alexandridis, T.; Lagopodi, A.; Kontouris, G.; Moshou, D. Spectral Identification of Disease in Weeds Using Multilayer Perceptron with Automatic Relevance Determination. Sensors 2018, 18, 2770. [Google Scholar] [CrossRef] [Green Version]
- Sampaio, G.S.; de Aguiar Vallim Filho, A.R.; da Silva, L.S.; da Silva, L.A. Prediction of Motor Failure Time Using An Artificial Neural Network. Sensors 2019, 19, 4342. [Google Scholar] [CrossRef] [Green Version]
- Runge, J.; Zmeureanu, R. Forecasting Energy Use in Buildings Using Artificial Neural Networks: A Review. Energies 2019, 12, 3254. [Google Scholar] [CrossRef] [Green Version]
- Kasantikul, K.; Yang, D.; Wang, Q.; Lwin, A. A Novel Wind Speed Estimation Based on the Integration of an Artificial Neural Network and a Particle Filter Using BeiDou GEO Reflectometry. Sensors 2018, 18, 3350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francik, S.; Kurpaska, S. The Use of Artificial Neural Networks for Forecasting of Air Temperature inside a Heated Foil Tunnel. Sensors 2020, 20, 652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Zhang, S.; Chen, X.; Wang, J. Artificial Combined Model Based on Hybrid Nonlinear Neural Network Models and Statistics Linear Models—Research and Application for Wind Speed Forecasting. Sustainability 2018, 10, 4601. [Google Scholar] [CrossRef] [Green Version]
- Niedbała, G.; Nowakowski, K.; Rudowicz-Nawrocka, J.; Magdalena, P.; Tomczak, R.J.; Tyksiński, T.; Pinto, A.A. Multicriteria Prediction and Simulation of Winter Wheat Yield Using Extended Qualitative and Quantitative Data Based on Artificial Neural Networks. Appl. Sci. 2019, 9, 2773. [Google Scholar] [CrossRef] [Green Version]
- Mudryk, K.; Francik, S.; Fraczek, J.; Slipek, Z.; Wrobel, M. Model of actual contact area of rye and wheat grains with flat surface. In Proceedings of the Engineering for Rural Development, Jelgava, Latvia, 23–24 May 2013; pp. 292–296. [Google Scholar]
- Wrobel, M.; Fraczek, J.; Francik, S.; Slipek, Z.; Mudryk, K. Modelling of unit contact surface of bean seeds using Artificial Neural Networks. In Proceedings of the Engineering for Rural Development, Jelgava, Latvia, 23–24 May 2013; pp. 287–291. [Google Scholar]
- Francik, S.; Ślipek, Z.; Frączek, J.; Knapczyk, A. Present Trends in Research on Application of Artificial Neural Networks in Agricultural Engineering. Agric. Eng. 2016, 20, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Vlontzos, G.; Pardalos, P.M. Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks. Renew. Sustain. Energy Rev. 2017, 76, 155–162. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D.D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [Green Version]
- Iddio, E.; Wang, L.; Thomas, Y.; McMorrow, G.; Denzer, A. Energy efficient operation and modeling for greenhouses: A literature review. Renew. Sustain. Energy Rev. 2020, 117, 109480. [Google Scholar] [CrossRef]
- Almonti, D.; Baiocco, G.; Tagliaferri, V.; Ucciardello, N. Artificial Neural Network in Fibres Length Prediction for High Precision Control of Cellulose Refining. Materials 2019, 12, 3730. [Google Scholar] [CrossRef] [Green Version]
- Tamouridou, A.A.; Alexandridis, T.K.; Pantazi, X.E.; Lagopodi, A.L.; Kashefi, J.; Kasampalis, D.; Kontouris, G.; Moshou, D. Application of Multilayer Perceptron with Automatic Relevance Determination on Weed Mapping Using. Sensors 2017, 17, 2307. [Google Scholar] [CrossRef]
- Martinez-Martinez, V.; Baladron, C.; Gomez-Gil, J.; Ruiz-Ruiz, G.; Navas-Garcia, L.M.; Aguiar, J.M.; Carro, B. Temperature and Relative Humidity Estimation and Prediction in the Tobacco Drying Process Using Artificial Neural Networks. Sensors 2012, 12, 14004–14021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niedbała, G. Application of Artificial Neural Networks for Multi-Criteria Yield Prediction of Winter Rapeseed. Sustainability 2019, 11, 533. [Google Scholar] [CrossRef] [Green Version]
- Bermejo, J.F.; Fernandez, J.F.G.; Polo, F.O.; Marquez, A.C. A Review of the Use of Artificial Neural Network Models for Energy and Reliability Prediction. A Study of the Solar PV, Hydraulic and Wind Energy Sources. Appl. Sci. 2019, 9, 1844. [Google Scholar] [CrossRef] [Green Version]
- Tina, G.M. Special Issue on Applications of Artificial Neural Networks for Energy Systems. Appl. Sci. 2019, 9, 3734. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Xu, X.; Huo, X.; Li, Y. Forecasting Models for Wind Power Using Extreme-Point Symmetric Mode Decomposition and Artificial Neural Networks. Sustainability 2019, 11, 650. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Chen, Y.; Hassan, S.G.; Li, D. Prediction of the temperature in a Chinese solar greenhouse based on LSSVM optimized by improved PSO. Comput. Electron. Agric. 2016, 122, 94–102. [Google Scholar] [CrossRef]
- Rodrigues, E.; Gomes, Á.; Gaspar, A.R.; Henggeler Antunes, C. Estimation of renewable energy and built environment-related variables using neural networks—A review. Renew. Sustain. Energy Rev. 2018, 94, 959–988. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, J.; Ahmad, M.W.; Rezgui, Y.; Hippolyte, J.L. Operational supply and demand optimisation of a multi-vector district energy system using artificial neural networks and a genetic algorithm. Appl. Energy 2019, 235, 699–713. [Google Scholar] [CrossRef]
- Zheng, M.; Leib, B.; Wright, W.; Ayers, P. Neural models to predict temperature and natural ventilation in a high tunnel. Trans. ASABE 2019, 62, 761–769. [Google Scholar] [CrossRef]
- Wrobel, M.; Fraczek, J.; Francik, S.; Slipek, Z.; Mudryk, K. Influence of degree of fragmentation on chosen quality parameters of briquette made from biomass of cup plant Silphium perfoliatum L. In Proceedings of the Engineering for Rural Development, Jelgava, Latvia, 23–24 May 2013; pp. 653–657. [Google Scholar]
- Byliński, H.; Sobecki, A.; Gębicki, J. The Use of Artificial Neural Networks and Decision Trees to Predict the Degree of Odor Nuisance of Post-Digestion Sludge in the Sewage Treatment Plant Process. Sustainability 2019, 11, 4407. [Google Scholar] [CrossRef] [Green Version]
Energy Consumption | Bulk Density | Parts of Chipped Fractions | ||||
---|---|---|---|---|---|---|
ANN | RMSE (Wh/kg) | MAPE (%) | RMSE (g/cm3) | MAPE (%) | RMSE (%) | MAPE (%) |
Willow | 0.17 | 10.27 | 0.000642 | 0.21 | 2.50 | 10.08 |
Miscanthus | 0.11 | 3.73 | 0.001187 | 1.28 | 1.72 | 8.40 |
Energy Consumption | Bulk Density | Parts of Milled Fractions | ||||
---|---|---|---|---|---|---|
ANN | RMSE (Wh/kg) | MAPE (%) | RMSE (g/cm3) | MAPE (%) | RMSE (%) | MAPE (%) |
Willow | 3.38 | 5.48 | 0.00212 | 1.31 | 2.79 | 5.90 |
Miscanthus | 2.44 | 6.56 | 0.00027 | 0.24 | 1.30 | 3.79 |
Energy Consumption | Briquette Density | Briquette Durability | ||||
---|---|---|---|---|---|---|
ANN | RMSE (Wh/kg) | MAPE (%) | RMSE (g/cm3) | MAPE (%) | RMSE (%) | MAPE (%) |
Willow | 1.22 | 3.43 | 0.0174 | 1.76 | 1.42 | 1.31 |
Miscanthus | 1.63 | 3.26 | 0.0156 | 1.43 | 1.02 | 0.91 |
Durability Range (%) | Moisture (%) | Theoretical Chop Length (mm) | Diameter of the Last Sieve (mm) | Briquetting Pressure (MPa) | Durability (%) | Density (g/cm3) | Energy Consumption (Wh/kg) |
---|---|---|---|---|---|---|---|
90-100 | 14 | 10 | 15 | 43 | 90.1 | 0.917 | 58.09 |
80-90 | 14 | 10 | 15 | 20 | 81.0 | 0.748 | 24.51 |
90-100 | 15 | 10 | 15 | 36 | 90.1 | 0.827 | 53.71 |
80-90 | 15 | 10 | 15 | 20 | 80.9 | 0.748 | 24.28 |
90-100 | 16 | 10 | 15 | 36 | 90.4 | 0.825 | 53.02 |
80-90 | 16 | 10 | 15 | 20 | 80.6 | 0.751 | 24.19 |
90-100 | 17 | 10 | 15 | 39 | 90.2 | 0.857 | 54.41 |
80-90 | 17 | 10 | 15 | 22 | 80.1 | 0.757 | 24.31 |
90-100 | 18 | 10 | 15 | 38 | 90.4 | 0.857 | 53.81 |
80-90 | 18 | 10 | 15 | 22 | 80.2 | 0.747 | 24.3 |
90-100 | 19 | 10 | 15 | 39 | 90.0 | 0.864 | 57.05 |
80-90 | 19 | 10 | 15 | 23 | 80.4 | 0.736 | 24.75 |
90-100 | 20 | 10 | 10 | 33 | 90.0 | 0.796 | 62.18 |
80-90 | 20 | 10 | 15 | 28 | 80.4 | 0.743 | 36.98 |
Durability Range (%) | Moisture (%) | Theoretical Chop Length (mm) | Diameter of the Last Sieve (mm) | Briquetting Pressure (MPa) | Durability (%) | Density (g/cm3) | Energy Consumption (Wh/kg) |
---|---|---|---|---|---|---|---|
90-100 | 14 | 10 | 15 | 42 | 90.0 | 0.859 | 53.83 |
80-90 | 14 | 10 | 15 | 22 | 81.8 | 0.760 | 26.73 |
90-100 | 15 | 10 | 15 | 42 | 90.3 | 0.854 | 53.06 |
80-90 | 15 | 10 | 15 | 20 | 80.3 | 0.709 | 26.06 |
90-100 | 16 | 10 | 15 | 38 | 90.3 | 0.840 | 50.22 |
80-90 | 16 | 10 | 15 | 20 | 91.1 | 0.661 | 26.02 |
90-100 | 17 | 10 | 15 | 44 | 90.2 | 0.832 | 54.12 |
80-90 | 17 | 10 | 15 | 22 | 81.5 | 0.640 | 26.02 |
90-100 | 18 | 10 | 10 | 32 | 90.4 | 0.795 | 73.38 |
80-90 | 18 | 10 | 15 | 26 | 80.9 | 0.631 | 27.08 |
90-100 | 19 | 10 | 10 | 38 | 90.4 | 0.785 | 78.27 |
80-90 | 19 | 10 | 15 | 34 | 80.4 | 0.636 | 51.07 |
90-100 | 20 | 20 | 4 | 36 | 90.6 | 0.853 | 115.24 |
80-90 | 20 | 10 | 10 | 24 | 81.1 | 0.724 | 70.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francik, S.; Knapczyk, A.; Knapczyk, A.; Francik, R. Decision Support System for the Production of Miscanthus and Willow Briquettes. Energies 2020, 13, 1364. https://doi.org/10.3390/en13061364
Francik S, Knapczyk A, Knapczyk A, Francik R. Decision Support System for the Production of Miscanthus and Willow Briquettes. Energies. 2020; 13(6):1364. https://doi.org/10.3390/en13061364
Chicago/Turabian StyleFrancik, Sławomir, Adrian Knapczyk, Artur Knapczyk, and Renata Francik. 2020. "Decision Support System for the Production of Miscanthus and Willow Briquettes" Energies 13, no. 6: 1364. https://doi.org/10.3390/en13061364
APA StyleFrancik, S., Knapczyk, A., Knapczyk, A., & Francik, R. (2020). Decision Support System for the Production of Miscanthus and Willow Briquettes. Energies, 13(6), 1364. https://doi.org/10.3390/en13061364