Air Enthalpy as an IAQ Indicator in Hot and Humid Environment—Experimental Evaluation
Abstract
:1. Introduction
1.1. Literature Review
1.2. Research Hypothesis
2. Materials and Methods
2.1. Research Scheme and Approach
2.2. Experimental Facilities
2.3. Enthalpy Determination Method
- ha = 1.006 · ta, dry air enthalpy,
- hg = water vapour enthalpy,
- ta = measured air temperature,
- w = 0.622·Pa/(P0 − Pa), humidity factor,
- w·hg = w·(2501 + 1.805·ta), water vapour enthalpy multiplied by the humidity factor,
- Pa = RH/100 · PS, partial pressure of water vapour,
- Ps = 610.94 · exp (17.625 · ta/(ta + 243.04)), saturation vapour pressure (Pa), and
- P0 = atmospheric pressure.
2.4. Thermal Comfort Model-Measurements
2.5. Air Perception Sensory Evaluation Tests—Vote
2.6. The Measuring Equipment
2.7. The Boarder Assumptions
3. Results
3.1. Experimental Relation of Dissatisfaction with Perception of Indoor Air Condition
3.2. Enthalpy Prediction for which the Thermal Comfort Model Gives Understated Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACC | indoor air acceptability index (-) |
cCO2 | concentration of carbon dioxide (ppm) |
h | air enthalpy (kg/kJ) |
hth | the border neutral enthalpy for user perception (kg/kJ) |
IAQindex | indoor air quality index (percentage of persons satisfied with indoor air quality) (%) |
Icl | clothing thermal insulation (m2 K/W or clo, where 1 clo = 0.155 m2 K/W) |
IEQindex | Indoor Environmental Quality index (combined value of percentage of persons satisfied) (%) |
LCI | lowest concentration interest |
m1 and c1 | equation coefficients of linear function of persons dissatisfied with defined temperature based on Fanger (-) |
m2 and c2 | equation coefficients of function of percentage dissatisfied with enthalpy (%) |
M | metabolic rate (met) |
pa | vapour pressure (Pa) |
PD | percentage dissatisfied (%) |
PD(IEQ) | percentage dissatisfied with IEQ (%) |
PD_exp | percentage dissatisfied with indoor perception by experimental evaluation (%) |
PD_ISO7730 | estimated percentage dissatisfied with thermal comfort by ISO 7730 (%) |
PDFanger | estimated percentage dissatisfied with thermal comfort by Fanger model by ISO 7730 (%) |
PD_Fang | estimated percentage dissatisfied based on Fang model (%) |
PD_Toftum | estimated percentage dissatisfied based on Totftum model (%) |
PMV | predicted mean vote—Thermal Sensation Scale (ISO 7730) |
PPD | predicted percentage dissatisfied (ISO 7730) |
RH | relative humidity of air (%) |
SDh | experimental standard deviation of enthalpy determination (%) |
SDvote | experimental standard deviation of panel votes (%) |
ta | indoor air temperature (°C) |
TC | thermal comfort index (%) |
TVOC | total volatile organic compounds |
tg | black globe temperature (°C) |
tmr | mean radiant temperature (°C) |
U | overall uncertainty (%) |
va | air velocity (m/s) |
VOC | volatile organic compounds |
References
- Yaglou, C.P. Sanitary Aspects of Air Conditioning. Am. J. Public Heal. Nations Heal. 1938, 28, 143–147. [Google Scholar] [CrossRef]
- Chu, C.M.; Jong, T.L. Enthalpy estimation for thermal comfort and energy saving in air conditioning system. Energy Convers. Manag. 2008, 49, 1620–1628. [Google Scholar] [CrossRef]
- Medeiros, C.M.; Baêta, F.D.C.; de Oliveira, R.F.; Tinôco, I.D.F.; Albino, L.F.; Cecon, P.R. Índice térmico ambiental de produtividade para frangos de corte. Rev. Bras. Eng. Agrícola e Ambient. 2005, 33, 19–27. [Google Scholar] [CrossRef]
- Chandra, S.; Fairey, P.W.; Bowen, A. Passive Cooling by Natural Ventilation: A Literature Review; Final Report, Task 1; Solar Energy Center: Cocoa, FL, USA, 1982; Volumes 1 and 2. [Google Scholar]
- Buffington, D.E.; Collazo-Arocho, A.; Canton, G.H.; Pitt, D.; Thatcher, W.W.; Collier, R.J. Black Globe-Humidity Index (BGHI) as Comfort Equation for Dairy Cows. Trans. ASAE 1981, 24, 711–714. [Google Scholar] [CrossRef]
- Piasecki, M.; Fedorczak-Cisak, M.; Furtak, M.; Biskupski, J. Experimental confirmation of the reliability of fanger’s thermal comfort model-Case study of a near-zero energy building (NZEB) office building. Sustainbility 2019, 11, 2461. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Clausen, G.; Fanger, P.O. Impact of temperature and humidity on the perception of indoor air quality. Indoor Air 1998, 9, 193–201. [Google Scholar] [CrossRef]
- Toftum, J. Human response to combined indoor environment exposures. Energy Build. 2002, 34, 601–606. [Google Scholar] [CrossRef]
- Berglund, L. Thermal and non-Thermal Effects of Humidity on Comfort. J. Hum. -Environ. Syst. 1997, 97, 239–246. [Google Scholar] [CrossRef]
- Lan, L.; Wargocki, P.; Wyon, D.P.; Lian, Z. Effects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses, and human performance. Indoor Air 2011, 21, 376–390. [Google Scholar] [CrossRef] [PubMed]
- Piasecki, M.; Kostyrko, K. Indoor Environmental Quality Assessment Model IEQ Developed in ITB. Part 1. Choice of the Indoor Environmental Quality Sub-Component Models. Ciepłownictwo Ogrzew. Went. 2018, 49/6, 223–232. [Google Scholar] [CrossRef]
- Lai, A.C.K.; Mui, K.W.; Wong, L.T.; Law, L.Y. An evaluation model for indoor environmental quality (IEQ) acceptance in residential buildings. Energy Build. 2009, 41, 930–936. [Google Scholar] [CrossRef]
- Heinzerling, D.; Schiavon, S.; Webster, T.; Arens, E. Indoor environmental quality assessment models: A literature review and a proposed weighting and classification scheme. Build. Environ. 2013, 70, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Piasecki, M. Practical implementation of the indoor environmental quality model for the assessment of nearly zero energy single-family building. Buildings 2019, 9, 214. [Google Scholar] [CrossRef] [Green Version]
- Toftum, J.; Jørgensen, A.S.; Fanger, P.O. Upper limits of air humidity for preventing warm respiratory discomfort. Energy Build. 1998, 28, 15–23. [Google Scholar] [CrossRef]
- Toftum, J.; Fanger, P.O. Air humidity requirements for human comfort. ASHRAE Trans. 1999, 105, 81–86. [Google Scholar]
- Fanger, P. Calculation of Thermal Comfort, Introduction of a Basic Comfort Equation. ASHRAE Trans. 1967, 73, 1–20. [Google Scholar]
- Fanger, P.O. Assessment of man’s thermal comfort in practice. Occup. Environ. Med. 1973, 30, 313–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ISO. ISO 7730: Ergonomics of the Thermal Environment Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; International Organization for Standardization: Geneva, Switzerland, 2005. [Google Scholar]
- Olesen, B.W.; Parsons, K.C. Introduction to thermal comfort standards and to the proposed new version of EN ISO 7730. Energy Build. 2002, 34, 537–548. [Google Scholar] [CrossRef]
- Rohles, F.H., Jr.; Nevins, R.G. Thermal comfort: New directions and standards. Aerosp. Med. 1973, 44, 730–738. [Google Scholar]
- Van Hoof, J. Forty years of Fanger’s model of thermal comfort: Comfort for all? Indoor Air 2008, 18, 182–201. [Google Scholar] [CrossRef]
- Djongyang, N.; Tchinda, R.; Njomo, D. Thermal comfort: A review paper. Renew. Sustain. Energy Rev. 2010, 4, 2626–2640. [Google Scholar] [CrossRef]
- Halawa, E.; Van Hoof, J. The adaptive approach to thermal comfort: A critical overview. Energy Build. 2012, 51, 101–110. [Google Scholar] [CrossRef]
- Croitoru, C.; Nastase, I.; Bode, F.; Meslem, A.; Dogeanu, A. Thermal comfort models for indoor spaces and vehicles—Current capabilities and future perspectives. Renew. Sustain. Energy Rev. 2015, 44, 304–318. [Google Scholar] [CrossRef]
- ANSI/ASHRAE. Standard 55-2017: Thermal Environmental Conditions for Human Occupancy; ASHRAE Inc.: Atlanta, GA, USA, 2017. [Google Scholar]
- Jin, L.; Zhang, Y.; Zhang, Z. Human responses to high humidity in elevated temperatures for people in hot-humid climates. Build. Environ. 2017, 114, 257–266. [Google Scholar] [CrossRef]
- Kleber, M.; Wagner, A. Investigation of indoor thermal comfort in warm-humid conditions at a German climate test facility. Build. Environ. 2018, 128, 216–224. [Google Scholar] [CrossRef]
- He, M.; Li, N.; He, Y.; He, D.; Wang, K. Influences of Temperature and Humidity on Perceived Air Quality with Radiant Panel Workstation. Procedia Eng. 2017, 205, 765–772. [Google Scholar] [CrossRef]
- Jing, S.; Li, B.; Tan, M.; Liu, H. Impact of relative humidity on thermal comfort in a warm environment. Indoor Built Environ. 2013, 22, 4. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhang, Y.; Zhang, H.; Pasut, W.; Arens, E.; Meng, Q. Human comfort and perceived air quality in warm and humid environments with ceiling fans. Build. Environ. 2015, 90, 178–185. [Google Scholar] [CrossRef]
- Buonocore, C.; De Vecchi, R.; Scalco, V.; Lamberts, R. Influence of relative air humidity and movement on human thermal perception in classrooms in a hot and humid climate. Build. Environ. 2018, 156, 233–242. [Google Scholar] [CrossRef]
- Rana, R.; Kusy, B.; Jurdak, R.; Wall, J.; Hu, W. Feasibility analysis of using humidex as an indoor thermal comfort predictor. Energy Build. 2013, 64, 17–25. [Google Scholar] [CrossRef]
- Frontczak, M.; Wargocki, P. Literature survey on how different factors influence human comfort in indoor environments. Build. Environ. 2011, 46, 922–937. [Google Scholar] [CrossRef]
- Kaczorek, D. Moisture buffering of multilayer internal wall assemblies at the micro scale: Experimental study and numerical modelling. Appl. Sci. 2019, 9, 3438. [Google Scholar] [CrossRef] [Green Version]
- Nowoświat, A.; Skrzypczyk, J.; Krause, P.; Steidl, T.; Winkler-Skalna, A. Estimation of thermal transmittance based on temperature measurements with the application of perturbation numbers. Heat Mass Transf. 2018, 54, 1477–1489. [Google Scholar] [CrossRef] [Green Version]
- Orlik-Kożdoń, B.; Steidl, T. Experimental and analytical determination of water vapour transmission properties of recyclable insulation material. Constr. Build. Mater. 2018, 192, 798–807. [Google Scholar] [CrossRef]
- Gawin, D.J.; Koniorczyk, M.; Wieckowska, A.; Kossecka, E. Effect of moisture on hygrothermal and energy performance of a building with cellular concrete walls in climatic conditions of Poland. ASHRAE Trans. 2004, 110, 795–803. [Google Scholar]
- Nicol, F. Adaptive thermal comfort standards in the hot-humid tropics. Energy Build. 2004, 36, 628–637. [Google Scholar] [CrossRef]
- Simonson, C.J. Moisture, thermal and ventilation performance of Tapanila ecological house. In VTT Tiedotteita—Valtion Teknillinen Tutkimuskeskus; VTT TIEDOTTEITA; Technical Research Centre of Finland: Espoo, Finland, 2000. [Google Scholar]
- Dehaene, S. The neural basis of the Weber-Fechner law: A logarithmic mental number line. Trends Cogn. Sci. 2003, 12, 244–246. [Google Scholar] [CrossRef]
- Goldstein, E.B.; Humphreys, G.W.; Shiffrar, M.; Yost, W.A. Blackwell Handbook of Sensation and Perception; Blackwell Publishing: Oxford, UK, 2008; ISBN 0631206841. [Google Scholar]
- Jokl, M.V. A methodology for the comprehensive evaluation of the indoor climate based on human body response: Evaluation of the hygrothermal microclimate based on human psychology. Energy Build. 2014, 85, 458–463. [Google Scholar] [CrossRef]
- CEN. EN 16798 Energy Performance of Buildings—Ventilation of Buildings—Part 1: Indoor Environmental input Parameters for Design and Assessment of Energy Performance of Buildings Addressing indoor Air Quality, Thermal Environment, Lighting and Acoustics; CEN: Brussels, Belgium, 2019. [Google Scholar]
- Piasecki, M.; Kostyrko, K.B. Combined Model for IAQ Assessment: Part 1—Morphology of the Model and Selection of Substantial Air Quality Impact Sub-Models. Appl. Sci. 2019, 9, 3918. [Google Scholar] [CrossRef] [Green Version]
- Piasecki, M.; Kostyrko, K.; Pykacz, S. Indoor environmental quality assessment: Part 1: Choice of the indoor environmental quality sub-component models. J. Build. Phys. 2017, 41, 264–289. [Google Scholar] [CrossRef]
- Piasecki, M.; Kozicki, M.; Firlag, S.; Goljan, A.; Kostyrko, K. The approach of including TVOCs concentration in the indoor environmental quality model (IEQ)- case studies of BREEAM certified office buildings. Sustainbility 2018, 10, 3902. [Google Scholar] [CrossRef] [Green Version]
- Piasecki, M.; Kostyrko, K.B. Indoor environmental quality assessment, part 2: Model reliability analysis. J. Build. Phys. 2018, 5, 1–28. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; de Dear, R.; Luo, M.; Ghahramani, A.; Lin, B. The uncertainty of subjective thermal comfort measurement. Energy Build. 2018, 181, 38–49. [Google Scholar] [CrossRef]
- Alfano, A.; Palella, B.I.; Riccio, G. The role of measurement accuracy on the thermal environment assessment by means of PMV index. Build. Environ. 2011, 46, 1361–1369. [Google Scholar] [CrossRef]
- Lira, I.; Taylor, J.R. Evaluating the Measurement Uncertainty: Fundamentals and Practical Guidance. Am. J. Phys. 2003, 71, 409–410. [Google Scholar] [CrossRef]
- Ribeiro, A.S.; Alves e Sousa, J.; Cox, M.G.; Forbes, A.B.; Matias, L.C.; Martins, L.L. Uncertainty Analysis of Thermal Comfort Parameters. Int. J. Thermophys. 2015, 36, 2124–2149. [Google Scholar] [CrossRef]
- Corless, R.M.; Gonnet, G.H.; Hare, D.E.G.; Jeffrey, D.J.; Knuth, D.E. On the Lambert W function. Adv. Comput. Math. 1996, 5, 329–359. [Google Scholar] [CrossRef]
- Mazzei, P.; Minichiello, F.; Palma, D. HVAC dehumidification systems for thermal comfort: A critical review. Appl. Therm. Eng. 2005, 25, 677–707. [Google Scholar] [CrossRef]
- Ali, M. Efficient indoor thermal comfort control via TSK adaptive control of HVAC systems. In Proceedings of the Conference Paper on “Computer, Control and Communication Engineering” (KIC4E-19), Kuala Lumpur, Malaysia, 23–25 September 2019. [Google Scholar]
- Romanska-Zapala, A.; Bomberg, M.; Dechnik, M.; Fedorczak-Cisak, M.; Furtak, M. On Preheating of the Outdoor Ventilation Air. Energies 2020, 13, 15. [Google Scholar] [CrossRef] [Green Version]
- Manfren, M.; Nastasi, B.; Piana, E.; Tronchin, L. On the link between energy performance of building and thermal comfort: An example. AIP Conf. Proc. 2019, 2123, 020066. [Google Scholar]
ta °C | RH % | h 1 kJ/kg | PD_ISO7730 % | PD_Toftum % | PD_Fang % |
---|---|---|---|---|---|
26 | 50 | 53 | 8 | 32 | 39 |
27 | 50 | 56 | 15 | 40 | 50 |
28 | 50 | 58 | 26 | 48 | 58 |
26 | 60 | 58 | 9 | 43 | 58 |
27 | 60 | 61 | 18 | 52 | 65 |
28 | 60 | 65 | 30 | 61 | 69 |
26 | 70 | 64 | 11 | 55 | 68 |
27 | 70 | 67 | 21 | 64 | 73 |
28 | 70 | 71 | 34 | 73 | 76 |
26 | 80 | 70 | 13 | 66 | 75 |
27 | 80 | 73 | 24 | 75 | 78 |
28 | 80 | 77 | 39 | 82 | 80 |
26 | 90 | 75 | 15 | 76 | 79 |
27 | 90 | 79 | 27 | 83 | 81 |
28 | 90 | 83 | 44 | 88 | 83 |
29 | 90 | 88 | 62 | 92 | 85 |
Group | Gender | Group Size | Age (years) | Height (cm) | Body Weight (kg) | Skin Surface “DuBois” (m2) | Body Mass Index | Clothing Insulation (clo) |
---|---|---|---|---|---|---|---|---|
Academic youth | Mean | 28 | 23 ± 1 | 167 ± 8 | 62 ± 10 | 1.8 ± 0.3 | 22 ± 4 | 0.6 ± 0.1 |
Sensor | Measurement Range | Resolution | Accuracy |
---|---|---|---|
Temperature | −20 to 50 °C | 0.01 °C | 0.5 °C |
Humidity | 0% to 100% | 0.1% RH | 5% |
Air speed | 0.01 to 10 m/s | 0.01 m/s | 2% |
Radiant temperature | 0 to 50 °C | 0.01 °C | 2% |
Carbon dioxide | 0 to 5000 ppm | 0.1 ppm | 1 ppm |
Parameter | SDh % | SDvote % | U % |
---|---|---|---|
PD_exp | 2.7 | 12.9 | 2·(7.29 + 166.4)−2 = 26.4 |
Test Number | Number of Votes | ta | RH | h | Number of Panellists Voting for Degree in Comfort Scale “0”–“3” | PD_exp | |||
---|---|---|---|---|---|---|---|---|---|
– | – | °C | % | kJ/kg | “0” | “1” | “2” | “3” | % |
1 | 23 | 27.2 | 44.9 | 53 | 11 | 8 | 3 | 1 | 17 |
2 | 23 | 27.0 | 45.8 | 53 | 12 | 7 | 3 | 1 | 17 |
3 | 23 | 26.8 | 44.8 | 52 | 13 | 8 | 2 | 0 | 9 |
4 | 23 | 26.6 | 43.4 | 52 | 17 | 3 | 1 | 0 | 5 |
5 | 28 | 28.3 | 56.8 | 63 | 0 | 16 | 8 | 4 | 43 |
6 | 28 | 28.6 | 59.7 | 64 | 2 | 14 | 8 | 4 | 43 |
7 | 28 | 28.5 | 62.3 | 68 | 2 | 13 | 10 | 3 | 46 |
8 | 28 | 28.3 | 71.8 | 73 | 2 | 10 | 8 | 8 | 57 |
9 | 28 | 27.6 | 80.5 | 77 | 1 | 3 | 6 | 16 | 79 |
10 | 28 | 27.4 | 86.0 | 79 | 1 | 2 | 10 | 15 | 89 |
Point | ta °C | Parameter m1 | Parameter c1 | x gw/kgdryair | h kJ/kg | PD_exp % |
---|---|---|---|---|---|---|
A | 26 | 0.3217 | −9.386 | 9.9 | 51.3 | 7 |
B | 27 | 0.5166 | −13.717 | 10.2 | 53.4 | 14 |
C | 28 | 0.6805 | −13.854 | 11.3 | 57.1 | 25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piasecki, M.; Kostyrko, K.; Fedorczak-Cisak, M.; Nowak, K. Air Enthalpy as an IAQ Indicator in Hot and Humid Environment—Experimental Evaluation. Energies 2020, 13, 1481. https://doi.org/10.3390/en13061481
Piasecki M, Kostyrko K, Fedorczak-Cisak M, Nowak K. Air Enthalpy as an IAQ Indicator in Hot and Humid Environment—Experimental Evaluation. Energies. 2020; 13(6):1481. https://doi.org/10.3390/en13061481
Chicago/Turabian StylePiasecki, Michał, Krystyna Kostyrko, Małgorzata Fedorczak-Cisak, and Katarzyna Nowak. 2020. "Air Enthalpy as an IAQ Indicator in Hot and Humid Environment—Experimental Evaluation" Energies 13, no. 6: 1481. https://doi.org/10.3390/en13061481
APA StylePiasecki, M., Kostyrko, K., Fedorczak-Cisak, M., & Nowak, K. (2020). Air Enthalpy as an IAQ Indicator in Hot and Humid Environment—Experimental Evaluation. Energies, 13(6), 1481. https://doi.org/10.3390/en13061481