Development of Weighting Scheme for Indoor Air Quality Model Using a Multi-Attribute Decision Making Method
Abstract
:1. Introduction and Literature Review
1.1. Research Problem
1.2. Basic Information on the MADM Approach
1.3. Basic Information on the ∑IAQ Model
- building sustainable assessment schemes (like BREEAM assessment)—three sub-components, named quality, ΣIAQquality;
- design purpose, considering the perceptible pollutants affecting indoor satisfaction and comfort, with the intention to use this index for calculating the IEQ—five sub-components, called comfort, ΣIAQcomfort; and
- complex design purpose, where ∑IAQindex represents health and comfort (seven sub-components, or more if necessary), called comfort and health, ΣIAQcomfort/health.
+W7a·IAQ(VOCnon-odorous) + W8·IAQ(CO) + W9·IAQ(NO2) + W10·IAQ(O3)
2. Materials and Methods
2.1. Research Procedure Diagram
2.2. MADM Method Applied to the ΣIAQ Model
2.3. Flow Chart of Weighting Scheme Determination
2.4. General Principles of Estimating IAQ Model Weighting Schemes
2.5. Calculation of the Objective Attribute Weights by the Entropy Method
2.6. Calculation of Subjective Attribute Weights Depending on the Toxicity of Air Pollution to Humans
2.7. Calculation of the Objective Weights of Correlation between Attributes by the CRITIC Method
2.8. Calculation of the Objective Weights for Ventilation Energy Expenditure
2.9. Combining the Weights by Calculation of Global Weights
2.10. Characteristics of the Case Study Building
2.11. Building-Related Research Limitations
3. Development of ΣIAQquality Model Weighting Schemes for the Case Study Building
3.1. Development of the Initial Decision Matrix Adapted to the Combined ∑IAQquality Model
3.2. Attribute Weights Obtained by the Entropy Method
3.3. Attribute Weights by the CRITIC Method
3.4. Relative Weights Obtained by Normalisation of the “Excess Concentration”
4. Results
4.1. Global Weights Calculated for the IAQquality Model Alternatives
4.2. The Results of the New Weighting Method Applied on IAQindex and IEQindex Results for theCaseStudy Building
5. Discussion
5.1. New Weighting Method Applied on IAQindex and IEQindex Estimation for a CaseStudy Building and Comparison of Its Results with Old Crude Weighting SystemResults
5.2. The WeightingProblem in Indoor Air Quality Component Sets Framework
- Development of an initial decision matrix adapted to the type of the combined ∑IAQ model;
- Normalisation of attribute data including different indoor air pollutant concentrations and their emission rates;
- Calculation of the objective attribute weights by the entropy method;
- Calculation or adoption of subjective health-connected weights from the database;
- Use of the CRITIC (Criteria Importance Through Inter-criteria Correlation) method in the case of mutually correlating attributes;
- Calculation of objective weights for ventilation energy expenditure to various IAQ sub-components (pollutants);
- Calculation of relative global weights for all significant air pollutants of the ∑IAQ model, considered in various schemes (various alternatives in the framework of decision model).
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Alternatives | Attribute X = 1…m | |||||
---|---|---|---|---|---|---|
ΔCO2 | TVOC | HCHO | CO2 (e) | TVOC (e) | HCHO (e) | |
mg/m3 | μg/m3 | μg/m3 | mg/m3∙h | μg/m3h | μg/m2h | |
a1 test study [5} +(e) emission rate = 0 |
810 mg/m3 1/xi = 0.0012 zij = 0.1043 |
787 μg/m3 1/x = 0.0013 zij = 0.0531 |
18 μg/m3 1/xij = 0.056 zij = 0.175 | 0 | 0 | 0 |
a2 minimum; (e) minimum TVOC and HCHO emission +1h; (e) minimum CO2 one person |
376.2 mg/m3 1/xij = 0.00265 zij = 0.2304 |
167.6 μg/m3 1/x = 0.0060 zij = 0.2449 |
10.6 g/m3 1/xij = 0.094 zij = 0.2937 |
16.2 mg/m3h 1/xij = 0.062 zij = 0.3333 |
13.6 μg/m3h 1/xij = 0.073 zij = 0.3201 |
4.26 μg/m2h 1/xij = 0.234 zij = 0.4134 |
a3 minimum+1h; (e) minimum TVOC HCHO +25% concentration range (e) minimum CO2 +25% concentration two persons2) |
392.4 mg/m3 1/x = 0.0025 zij = 0.2174 |
178.3 μg/m3 1/x = 0.0056 zij = 0.2286 |
26.0 μg/m3 1/x = 0.038 zij = 0.1187 |
32.4 mg/m3 ∙ h 1/xij = 0.031 zij = 0.1666 |
Σ
24.3 μg/m3h 1/xij = 0.041 Zij = 0.1798 |
Σ
20.2 μg/m2 h 1/xij = 0.049 zij = 0.0866 |
a4 minimum+1h; (e) minimum TVOC, HCHO +25% concentration range; (e) CO2 minimum one person |
376.2 mg/m3 1/x = 0.00265 zij = 0.2304 |
178.3 μg/m3 1/x = 0.0056 zij = 0.2286 |
26.0 μg/m3 1/xij = 0.038 zij = 0.1187 |
16.2 mg/m3h 1/xij = 0.062 zij = 0.3333 |
Σ
24.3 μg/m3h 1/xij = 0.041 zij = 0.1798 |
Σ
20.2 μg/m2 h 1/xij = 0.049 zij = 0.0866 |
a5 minimum+1h;(e) minimum TVOC, HCHO; (e) CO2 minimum + 25% concentration range; two persons |
392.4 mg/m3 1/x = 0.0025 zij = 0.2174 |
167.6 μg/m3 1/x = 0.0060 zij = 0.2449 |
10.6 g/m3 1/x = 0.094 zij = 0.2937 |
32.4 mg/m3h /xij = 0.031 zij = 0.1666 |
13.6 μg/m3h 1/xij = 0.073 zij = 0.3201 |
4.26 μg/m2h 1/xij = 0.234 zij = 0.4134 |
∑ 1/xij | 0.0115 | 0.0245 | 0.32 | 0.186 | 0.228 | 0.566 |
Alternatives | Attribute X = 1…m | |||||
---|---|---|---|---|---|---|
ΔCO2 | TVOC | HCHO | CO2(e) | TVOC (e) | HCHO (e) | |
mg/m3 | μg/m3 | μg/m3 | mg/m3∙h | μg/m3h | μg/m2h | |
a1 Test report [5]; +(e) emission rate = 0 |
810 mg/m3 810–810/ −433.8 = 0 |
787 μg/m3 787–787/ −619.4 = 0 |
18μg/m3 18–26/ −15.4 = 0.519 |
0 0–32.4/ −32.4 = 1 |
0 0–24.3/ −24.3 = 1 |
0 0–20.2/ −20.2 = 1 |
a2 minimum; (e) minimum TVOC, HCHO +1h; (e) minimum CO2 one person |
376.2 mg/m3 376.2–810/ −433.8 = 1 |
167.6 μg/m3 167.6–787/ −629.4 = 1 |
10.6 μg/m3 10.6–26/ −15.4 = 1 |
16.2 mg/m3h 16.2–32.4/ −32.4 = 0.5 |
13.6 μg/m3h 13.6–24.3/ −24.3 = 0.440 |
4.26 μg/m2h 4.26–20.2/ −20.2 = 0.789 |
a2-2 Test study [5]; CO2 TVOC, HCHO; (e) minimum emission rate; (e) CO2 one person |
810 mg/m3 810–810/ −433.8 = 0 |
787 μg/m3 787–787/ −619.4 = 0 |
18 μg/m3 18–26/ −15.4 = 0.519 |
16.2 mg/m3h 16.2–32.4/ −32.4 = 0.5 |
13.6 μg/m3h 13.6–24.3/ −24.3 = 0.440 |
4.26 μg/m2h 4.26–20.2/ −20.2 = 0.789 |
a3 minimum +1h; (e) minimum +25% TVOC, HCHO concentration range; (e) CO2 two persons |
392.4 mg/m3 392.4–810/ −433.8 = 0.963 |
178.3 μg/m3 178.3–787/ −629.4 = 0.967 |
26.0 μg/m3 26.0–26.0/ −15.4 = 0 |
32.4 mg/m3h two persons 32.4–32.4/ −32.4 = 0 |
24.3 μg/m3h 24.3–24.3/ −24.3 = 0 |
20.2 μg/m2 h 20.2–20.2/ −20.2 = 0 |
a4 minimum+1h; (e) minimum +25% TVOC, HCHO concentration range (e) minimum CO2 one person |
376.2 mg/m3 376.2–810/ −433.8 = 1 |
178.3 μg/m3 178.3–787/ −629.4 = 0.967 |
26.0 μg/m3 26.0–26.0/ −15.4 = 0 |
16.2 mg/m3h 16.2–32.4/ −32.4 = 0.5 |
24.3 μg/m3h 24.3–24.3/ −24.3 = 0 |
20.2 μg/m2 h 20.2–20.2/ −20.2 = 0 |
a5 minimum+1h; (e) minimum +25% CO2 2 persons; (e) minimum TVOC and HCHO |
392.44 mg/m3 392.4–810/ − 433.8 = 0.963 |
167.6 μg/m3 167.6–787/ −629.4 = 1 |
10.6 μg/m3 10.6–26/ −15.4 = 1 |
32.4] mg/m3h 32.4–32.4/ −32.4 = 0 |
13.6 μg/m3h 13.6–24.3/ −24.3 = 0.440 |
4.26 μg/m2h 4.26–20.2/ −20.2 = 0.789 |
Maximum xij value of concentration range lit. | 1800 mg/m3 | 1000 μg/m3 | 160 μg/m3 |
64.8 mg/m3∙h four persons | 57.1 μg/m3h | 68.2 μg/m2h |
Maximum xij value in j attribute column | 810 mg/m3 | 787 μg/m3 | 26.0 μg/m3 | 32.4 μg/m3 | 24.3 μg/m3h | 20.2 μg/m2h |
Minimum xij level of ventilation load (lit.) | 360 mg/m3 | 154 μg/m3 | 5.8 μg/m3 | 16.2 mg/m3h | 13.6 μg/m3h | 4.26 μg/m2h |
Minimum xij value in attribute j column | 376.2 | 167.6 | 10.6 | 0 | 0 | 0 |
Minimum xij–maximum xij | −433.8 | −619.4 | −15.4 | −32.4 | −24.3 | −20.2 |
References
- Navarro, I.J.; Yepes, V.; Martí, J.V. A Review of Multicriteria Assessment Techniques Applied to Sustainable Infrastructure Design. Adv. Civ. Eng. 2019, 2019, 1–16. [Google Scholar] [CrossRef]
- Shrubsole, C.; Dimitroulopoulou, S.; Foxall, K.; Gadeberg, B.; Doutsi, A. IAQ guidelines for selected volatile organic compounds (VOCs) in the UK. Build. Environ. 2019, 165, 106382. [Google Scholar] [CrossRef]
- Piasecki, M.; Kostyrko, K.; Pykacz, S. Indoor environmental quality assessment: Part 1: Choice of the indoor environmental quality sub-component models. J. Build. Phys. 2017, 41, 264–289. [Google Scholar] [CrossRef]
- Piasecki, M.; Kostyrko, K.B. Combined model for IAQ assessment: Part 1—Morphology of the model and selection of substantial air quality impact sub-models. Appl. Sci. 2019, 9, 3918. [Google Scholar] [CrossRef] [Green Version]
- Piasecki, M.; Kozicki, M.; Firlag, S.; Goljan, A.; Kostyrko, K. The approach of including TVOCs concentration in the indoor environmental quality model (IEQ)—Case studies of BREEAM certified office buildings. Sustainability 2018, 10, 3902. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Dai, H.N.; Wang, H. A smart MCDM framework to evaluate the impact of air pollution on city sustainability: A case study from China. Sustainability 2017, 9, 911. [Google Scholar] [CrossRef] [Green Version]
- CEN. Energy Performance of Buildings—Ventilation of Buildings—Part 1: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics; EN 16798; CEN: Brussels, Belgium, 2019. [Google Scholar]
- Piasecki, M.; Kostyrko, K.B. Indoor environmental quality assessment, part 2: Model reliability analysis. J. Build. Phys. 2018, 5, 1–28. [Google Scholar] [CrossRef]
- Wong, L.T.; Mui, K.W.; Hui, P.S. A multivariate-logistic model for acceptance of indoor environmental quality (IEQ) in offices. Build.Environ. 2008, 43, 1–6. [Google Scholar] [CrossRef]
- Alemi-Ardakani, M.; Milani, A.S.; Yannacopoulos, S.; Shokouhi, G. On the effect of subjective, objective and combinative weighting in multiple criteria decision making: A case study on impact optimization of composites. Expert Syst. Appl. 2016, 46, 426–438. [Google Scholar] [CrossRef]
- Shanian, A.; Savadogo, O. A methodological concept for material selection of highly sensitive components based on multiple criteria decision analysis. Expert Syst. Appl. 2009, 36, 1362–1370. [Google Scholar] [CrossRef]
- Jahan, A.; Mustapha, F.; Sapuan, S.M.; Ismail, M.Y.; Bahraminasab, M. A framework for weighting of criteria in ranking stage of material selection process. Int. J. Adv. Manuf. Technol. 2012, 58, 411–420. [Google Scholar] [CrossRef]
- Moridi, P.; Atabi, F.; Nouri, J. Weighting and prioritizing of air pollutant filtration technologies for controlling NH3, PM and VOCs by fuzzy TOPSIS method. Iran Occup. Heal. 2015, 12, 1–9. [Google Scholar]
- Keshavarz Ghorabaee, M.; Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making. Econ. Comput. Econ. Cybern. Stud. Res. 2016, 50, 25–44. [Google Scholar]
- Invidiata, A.; Lavagna, M.; Ghisi, E. Selecting design strategies using multi-criteria decision making to improve the sustainability of buildings. Build. Environ. 2018, 139, 58–68. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Kaklauskas, A.; Turskis, Z.; Kalibatas, D. An approach to multi-attribute assessment of indoor environment before and after refurbishment of dwellings. J. Environ. Eng. Landsc. Manag. 2009, 17, 5–11. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Cavallaro, F.; Podvezko, V.; Ubarte, I.; Kaklauskas, A. MCDM assessment of a healthy and safe built environment according to sustainable development principles: A practical neighborhood approach in vilnius. Sustainability 2017, 9, 702. [Google Scholar] [CrossRef] [Green Version]
- Noryani, M.; Sapuan, S.M.; Mastura, M.T. Multi-criteria decision-making tools for material selection of natural fibre composites: A review. J. Mech. Eng. Sci. 2018, 12, 3330–3353. [Google Scholar] [CrossRef]
- Issa, U.H.; Miky, Y.H.; Abdel-Malak, F.F. A decision support model for civil engineering projects based on multi-criteria and various data. J. Civ. Eng. Manag. 2019, 25, 100–113. [Google Scholar] [CrossRef]
- Lotfi, F.H.; Fallahnejad, R. Imprecise shannon’s entropy and multi attribute decision making. Entropy 2010, 12, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Peng, A.H.; Xiao, X.M. Material selection using PROMETHEE combined with analytic network process under hybrid environment. Mater. Des. 2013, 47, 643–652. [Google Scholar] [CrossRef]
- Huang, I.B.; Keisler, J.; Linkov, I. Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Sci. Total Environ. 2011, 19, 3578–3594. [Google Scholar] [CrossRef]
- Cegan, J.C.; Filion, A.M.; Keisler, J.M.; Linkov, I. Trends and applications of multi-criteria decision analysis in environmental sciences: Literature review. Environ. Syst. Decis. 2017, 37, 123–133. [Google Scholar] [CrossRef]
- Brauers, W.K.M.; Zavadskas, E.K. Robustness of MULTIMOORA: A method for multi-objective optimization. Informatica 2012, 23, 1–25. [Google Scholar] [CrossRef]
- Hafezalkotob, A.; Hafezalkotob, A. Extended MULTIMOORA method based on Shannon entropy weight for materials selection. J. Ind. Eng. Int. 2015, 12, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z. Uncertain Multi-Attribute Decision Making: Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 9783662456408. [Google Scholar]
- Jovanovic, S.; Savic, S.; Jovicic, N.; Boskovic, G.; Djordjevic, Z. Using multi-criteria decision making for selection of the optimal strategy for municipal solid waste management. Waste Manag. Res. 2016, 34, 884–895. [Google Scholar] [CrossRef] [PubMed]
- Mintz, D. Technical Assistance Document for the Reporting of Daily Air Quality—The Air Quality Index (AQI); EPA 454/B12-001; U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Air Quality Assessment Division: Research Triangle Park, NC, USA, 2013. [Google Scholar]
- Körth, H. Zur Berücksichtigung mehrerer Zielfunktionen bei der Optimierung von Produktionsplänen. Math. Wirtsch. 1969, 6, 184–201. [Google Scholar]
- Zavadskas, E.K.; Stević, Ž.; Turskis, Z.; Tomašević, M. A novel extended EDAS in Minkowski space (EDAS-M) method for evaluating autonomous vehicles. Stud. Inform. Control 2019, 28, 255–264. [Google Scholar] [CrossRef]
- Vujicic, M.; Papic, M.; Blagojevic, M. Comparative analysis of objective techniques for criteria weighing in two MCDM methods on example of an air conditioner selection. Tehnika 2017, 67, 422–428. [Google Scholar] [CrossRef] [Green Version]
- Rode, C. IEA Indoor Air Quality Design and Control in Low-Energy Residential Buildings—Annex 68—Subtask 1: Defining the Metrics. In the Search of Indices to Evaluate the Indoor Air Quality of Low-Energy Residential Buildings; AIVC Contributed Report 17; Technical University of Denmark: Copenhagen, Denmark, 2017. [Google Scholar]
- WHO Regional Office for Europe. Evolution of WHO Air Quality Guidelines: Past, Present and Future; WHO Regional Office for Europe: Copenhagen, Denmark, 2017. [Google Scholar]
- Carrer, P.; de Oliveira Fernandes, E.; Santos, H.; Hänninen, O.; Kephalopoulos, S.; Wargocki, P. On the development of health-based ventilation guidelines: Principles and framework. Int. J. Environ. Res. Public Health 2018, 15, 1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, C.J.; Andersen, R.K.; Toftum, J.; Nielsen, T.R. Effect of formaldehyde on ventilation rate and energy demand in Danish homes: Development of emission models and building performance simulation. Build. Simul. 2020, 13, 197–212. [Google Scholar] [CrossRef]
- Piasecki, M.; Kostyrko, K.; Fedorczak-Cisak, M.K.N. The Air Enthalpy as IAQ Indicator in Hot and Humid Environments—Experimental Evaluation. Energies 2020, 13, 1481. [Google Scholar] [CrossRef] [Green Version]
- Teleszewski, T.; Gładyszewska-Fiedoruk, K. The concentration of carbon dioxide in conference rooms: A simplified model and experimental verification. Int. J. Environ. Sci. Technol. 2019, 16, 8031–8040. [Google Scholar] [CrossRef] [Green Version]
- Hori, H.; Ishimatsu, S.; Fueta, Y.; Ishidao, T. Evaluation of a real-time method for monitoring volatile organic compounds in indoor air in a Japanese university. Environ. Health Prev. Med. 2013, 18, 285–292. [Google Scholar] [CrossRef] [PubMed]
- U.S. Green Building Council. USGBC LEED v4 for Building Design and Construction—Current Version; U.S. Green Building Council: New York, NY, USA, 2019. [Google Scholar]
- Yuan, J.; Han, J.H.; Xie, X.D.; Qi, Z.Y.; Yang, X.; Zhao, B.; Zhao, R.; Ye, J.J.; Xie, X.D.; Qi, Z.Y.; et al. A new indoor air quality assessment system and its software tool. In Proceedings of the Indoor Air 2005, 10th International Conferenceon Indoor Air Quality and Climate, Beijing, China, 4–9 September 2005; Volume 1–5. [Google Scholar]
- Tao, H.; Fan, Y.; Li, X.; Zhang, Z.; Hou, W. Investigation of formaldehyde and TVOC in underground malls in Xi’an, China: Concentrations, sources, and affecting factors. Build. Environ. 2015, 85, 85–93. [Google Scholar] [CrossRef]
- Ye, W.; Zhang, X.; Gao, J.; Cao, G.; Zhou, X.; Su, X. Indoor air pollutants, ventilation rate determinants and potential control strategies in Chinese dwellings: A literature review. Sci. Total Environ. 2017, 586, 696–729. [Google Scholar] [CrossRef]
- Péry, A.; Bonvallot, N.; El Yamani, M.; Boulanger, G.; Karg, F.; Mosqueron, L.; Ismert, M.; Guillossou, G.; Glorennec, P. French occupational exposure limit and toxicological reference values: Objectives and methods. Environ.Risques Sante 2013, 12, 442–449. [Google Scholar]
- Mosqueron, L.; Kirchner, S.; Nedellec, V. Bilan des études françaises sur la mesure de la qualité de l’air à l’intérieur des bâtiments (1990–2001). Environ. Risques Sante 2002, 1, 31–41. [Google Scholar]
- Keršulienė, V.; Zavadskas, E.K.; Turskis, Z. Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (swara). J. Bus. Econ. Manag. 2010, 21, 32–42. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Ustinovichius, L.; Shevchenko, G. Attributes weights determining peculiarities in multiple attribute decision making methods. Eng. Econ. 2010, 21, 32–43. [Google Scholar]
- Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. A multicriteria approach for evaluating the performance of industrial firms. Omega 1992, 20, 467–474. [Google Scholar] [CrossRef]
- Adalı, E.A.; Işık, A.T. Critic and Maut Methods for the Contract Manufacturer Selection Problem. Eur. J. Multidiscip. Stud. 2017, 2, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Deepa, N.; Ganesan, K.; Srinivasan, K.; Chang, C.Y. Realizing sustainable development via modified integrated weighting MCDM model for Ranking Agrarian Dataset. Sustainability 2019, 11, 6060. [Google Scholar] [CrossRef] [Green Version]
- American Industrial Hygiene Association AIHA. Odor Thresholds for Chemicals with Established Health Standards; AIHA: Fairfax, VA, USA, 2013. [Google Scholar]
- Noguchi, M.; Mizukoshi, A.; Yanagisawa, Y.; Yamasaki, A. Measurements of volatile organic compounds in a newly built daycare center. Int. J. Environ. Res. Public Health 2016, 13, 736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Lu, Y.; Chou, D.-C. Indoor air quality investigation of a university library based on field measurement and questionnaire survey. Int. J. Low Carbon Technol. 2018, 13, 148–160. [Google Scholar] [CrossRef]
- Fedorczak-Cisak, M.; Kotowicz, A.; Radziszewska-Zielina, E.; Sroka, B.; Tatara, T.; Barnaś, K. Multi-Criteria Optimisation of an Experimental Complex of Single-Family Nearly Zero-Energy Buildings. Energies 2020, 13, 1541. [Google Scholar] [CrossRef] [Green Version]
- Manfren, M.; Nastasi, B.; Piana, E.; Tronchin, L. On the link between energy performance of building and thermal comfort: An example. AIP Conf. Proc. 2019, 2123, 020066. [Google Scholar]
- Yun, G.Y. Influences of perceived control on thermal comfort and energy use in buildings. Energy Build. 2018, 158, 822–830. [Google Scholar] [CrossRef]
- Bomberg, M.; Kisilewicz, T.; Mattock, C. Methods of Building Physics; Krakow University: Kraków, Poland, 2017; pp. 1–301. [Google Scholar]
Alternatives | Attributes X1...m(j = 1…. m) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
ai....n(i = 1…n) | X1 | X2 | X3 | X4 | X5 (e) | X6 (e) | X7(e) | Xm(e) | ||
a1 | x11 | x12 | x13 | x14 | ...... | X15 | X16 | X17 | ..... | x1m |
a2 | x21 | x22 | X23 | X25 | X26 | x2m | ||||
a3 | x31 | X32 | X35 | x3m | ||||||
.... | ....... | ........ | ....... | ....... | ....... | ..... | ...... | ...... | ||
an | xn1 | Xn2 | Xn3 | Xn4 | Xn5 | Xn6 | Xn7 | ...... | xnm |
Alternatives a = 1…n | Attributes X1…m(j = 1…m) | ||||||||
---|---|---|---|---|---|---|---|---|---|
CO2 | TVOC | HCHO | VOC Odorous | x High Enthalpy | PM2.5 | Emissions | |||
CO2(e) | TVOC (e) | HCHO (e) | |||||||
IAQquality in quasi-stable state with load by emissions | |||||||||
IAQquality | x11 | x12 | x13 | ||||||
IAQquality(emin) | x21 | x22 | x23 | x27 | x28 | x29 | |||
IAQquality+(e25%) | x31 | x32 | x33 | x37 | x38 | x39 | |||
IAQcomfort in quasi-stable state with load by emissions | |||||||||
IAQcomfort | x11 | x12 | x13 | X14 | x15 | x16 | x17 | x18 | x19 |
IAQcomfort (emin) | x21 | x22 | x23 | x24 | x25 | x26 | x27 | x28 | x29 |
IAQcomfort+(e25%) | x31 | x32 | x33 | x34 | x35 | x36 | x37 | x38 | x39 |
IAQcomfort/health in quasi-stable state with load by emissions | |||||||||
IAQcomfort/health | x11 | x12 | x13 | x14 | x15 | ….. | x17 | x18 | X19 |
IAQcomfort/health (emin) | x21 | x22 | x23 | x24 | x25 | ….. | x27 | x28 | x29 |
IAQcomfort/health +(e25%) | x31 | x32 | x33 | x34 | x35 | ….. | x37 | x38 | x39 |
Parameters | Attributes, X1…m | ||||||||
---|---|---|---|---|---|---|---|---|---|
CO2 ppm | TVOC μg/m3 | HCHO μg/m3 | VOCodorous μg/m3 e.g., NO2 | x Enthalpy kJ/kg | PM2.5 μg/m3 | Emission Bio-CO2 e mg/m3 h.pers. | Emission TVOC e mg/m3 h | Emission HCHO e μg/m2 h | |
max(xij) | 1000 | 1000 | 160 | 660 | 80 | 100 | 64.84 persons | 57.1 | 68.2 |
min(xij) | 200 | 154 | 5.8 | 20 | 34 | 10 | 16.2 one person | 13.6 | 4.26 |
min xij–max xij | −800 | −846 | −194.2 | −640 | −46 | −90 | −48.6 | −43.5 | −63.94 |
xij lit.value | 450 | 787 | 18 | 40 | 45 | 35 | 32.4 mean value | 28.6 mean value | 36 |
Normalised attribute values nij calculated according to Equation (9) | |||||||||
0.55 | 0.213 | 0.88 | 0.94 | 0.44 | 0.65 | 0.5 | 0.5 | 0.47 | |
Normalised attribute values nij calculated according to Equation (12) | |||||||||
0.68 | 0.25 | 0.73 | 0.97 | 0.76 | 0.72 | 0.67 | 0.65 | 0.50 |
Different Types of Air Pollutants and Subjective Weights | |||||||||
---|---|---|---|---|---|---|---|---|---|
CO | CO2 | NH3 | O3 | HCHO * | PM10 | TVOC | Rn | microbes | benzene |
0.21 | 0.01556 | 0.01556 | 0.158 | 0.21 | 0.0525 | 0.21 | 0.105 | 0.0233 | 0.19 |
The levels of indoor air enthalpy and related user dissatisfaction (%) | |||||||||
Enthalpy kJ/kg | 34.5 | 44.5 | 59.5 | 70.5 | 80.0 | ||||
Dissatisf. % | 10 | 20 | 40 | 60 | 81.9 |
lternatives | Attributes | |||||
---|---|---|---|---|---|---|
∆ CO2 (1),(2) | TVOC | HCHO | CO2 e (2) | TVOC e (3) | HCHO e(4) | |
ppm mg/m3 | μg/m3 | μg/m3 | mg/m3h | μg/m3h | μg/m2 h | |
a1 test study [5] (e) emission rate = 0 | 450 ppm 810 mg/m3 | 787 | 18 | 0 | 0 | 0 |
a2 minimum [3] (e) minimum TVOC and HCHO; (e) minimum CO2 one person | 360 + 16.2 = 376.2 mg/m3 | 154 + 13.6 = 167.6 | 5.8 + 4.26 = 10.6 | 16.2 one person | 13.6 | 4.26 |
a2-2 test study [5] (e) minimum TVOC and HCHO; (e) minimum CO2 one person | 450 ppm 810 mg/m3 | 787 | 18 | 16.2 one person | 13.6 | 4.26 |
a3 minimum + 1h (e) minimum + 25% concentration (e) CO2 two persons2) | 200ppm 360 + 32.4= 392.4 mg/m3 | 154 + 24.3 = 178.3 | 5.8 + 20.2 = 26.0 | 32.4 two persons | 10.8 + 13.6 = 24.3 | 15.9 + 4.26 = 20.2 |
a5 minimum+ 1h(e) minimum TVOC, HCHO; (e) CO2 minimum + 25% concentration two persons | 200ppm 360 + 32.4 = 392.4 mg/m3 | 167.6 | 10.6 | 32.4 two persons | 13.6 | 4.26 |
Maximum xij level of ventilation load (lit.) | 1000 ppm 1800 mg/m3 | 1000 | 160 | 64.8 mg/m3h four persons | 57.1 | 68.2 |
Maximum xij value in attribute j column | 810 | 787 | 26.0 | 32.4 | 24.3 | 20.2 |
Minimum xij level of ventilation load (lit.) | 200 ppm 360 mg/m3 | 154 | 5.8 10.6 | 16.2 mg/m3 hone person | 13.6 | 4.26 |
Minimum xij value in attribute j column | 376.2 | 167.6 | 10.6 | 0 | 0 | 0 |
Alternatives | Attribute X = 1…m | |||||
---|---|---|---|---|---|---|
∆CO2 | TVOC | HCHO | CO2 (e) | TVOC (e) | HCHO (e) | |
(a) | ||||||
a1 | 0.1043 | 0.0531 | 0.175 | 0 | 0 | 0 |
a2 | 0.2304 | 0.2449 | 0.2937 | 0.3333 | 0.3201 | 0.4134 |
a3 | 0.2174 | 0.2286 | 0.1187 | 0.1666 | 0.1798 | 0.0866 |
a4 | 0.2304 | 0.2286 | 0.1187 | 0.3333 | 0.1798 | 0.0866 |
a5 | 0.2174 | 0.2449 | 0.2937 | 0.1666 | 0.3201 | 0.4134 |
(b) | ||||||
a1 | 0.1188 | 0.0656 | 0.1986 | 0 | 0 | 0 |
a2 | 0.1188 | 0.0656 | 0.1986 | 0.3333 | 0.3201 | 0.4134 |
a3 | 0.2475 | 0.2828 | 0.1347 | 0.1666 | 0.1798 | 0.0866 |
a4 | 0.2624 | 0.2828 | 0.1347 | 0.3333 | 0.1798 | 0.0866 |
a5 | 0.2475 | 0.3030 | 0.3333 | 0.1666 | 0.3201 | 0.4134 |
Attributes | ∆CO2 | TVOC | HCHO |
---|---|---|---|
Decision matrix with alternative a2 | |||
Entropy ej | 0.9790 | 0.9444 | 0.9509 |
Divergence dj | 0.0210 | 0.0556 | 0.0491 |
Relative weight wj,entropy | 0.16706 | 0.44232 | 0.39061 |
Decision matrix with alternative a2-2 | |||
Entropy ej | 0.9620 | 0.8907 | 0.9619 |
Divergence dj | 0.0381 | 0.1093 | 0.0380 |
Relative weight wj,entropy | 0.2055 | 0.5895 | 0.20496 |
Alternatives | ∆CO2 | TVOC | HCHO | CO2 e | TVOC e | HCHO e |
---|---|---|---|---|---|---|
(a) | ||||||
σj | 0.393 | 0.394 | 0.447 | 0.374 | 0.369 | 0.428 |
a1 | 0 | 0 | 0.519 | 1 | 1 | 1 |
a2 | 1 | 1 | 1 | 0.5 | 0.440 | 0.789 |
a3 | 0.963 | 0.967 | 0 | 0 | 0 | 0 |
a4 | 1 | 0.967 | 0 | 0.5 | 0 | 0 |
a5 | 0.963 | 1 | 1 | 0 | 0.440 | 0.789 |
(b) | ||||||
σj | 0.478 | 0.479 | 0.376 | 0.374 | 0.369 | 0.428 |
a1 | 0 | 0 | 0.519 | 1 | 1 | 1 |
a2 | 0 | 0 | 0.519 | 0.5 | 0.440 | 0.789 |
a3 | 0.963 | 0.967 | 0 | 0 | 0 | 0 |
a4 | 1 | 0.967 | 0 | 0.5 | 0 | 0 |
a5 | 0.963 | 1 | 1 | 0 | 0.440 | 0.789 |
Attributes | ∆CO2 | TVOC | HCHO | CO2 e | TVOC e | HCHO e |
---|---|---|---|---|---|---|
∆CO2 | 1.0000 | 0.9984 | −0.0170 | −0.7759 | −0.8451 | −0.5654 |
TVOC | 0.9984 | 1.0000 | 0.0205 | −0.8012 | −0.8252 | −0.5346 |
HCHO | −0.0170 | 0.0205 | 1.0000 | 0.0136 | 0.5477 | 0.8340 |
CO2 e | −0.7759 | 0.0136 | 0.0136 | 1.0000 | 0.6782 | 0.4537 |
TVOC e | −0.8451 | −0.8252 | 0.5477 | 0.6782 | 1.0000 | 0.9185 |
HCHO e | −0.5654 | −0.5346 | 0.8340 | 0.4537 | 0.9185 | 1.0000 |
(a) | ||||||
∆CO2 | 1 | −0.775907 | ||||
TVOC | 1 | −0.8252373 | ||||
HCH0 | 1 | 0.83395897 | ||||
CO2 e | −0.775907 | 1 | ||||
TVOC e | −0.825237 | 1 | ||||
HCHO e | 0.833959 | 1 | ||||
(b) | ||||||
∆CO2 | 1 | −0.7496659 | ||||
TVOC | 1 | −0.750258 | ||||
HCH0 | 1 | 0.8279349 | ||||
CO2 e | −0.7496659 | 1 | ||||
TVOC e | −0.750258 | 1 | ||||
HCHO e | 0.8279349 | 1 |
(1 – Rjk) | |||
---|---|---|---|
Attributes | CO2 | TVOC | HCHO |
Standard deviation | 0.393 | 0.394 | 0.447 |
CO2 | 0 | ||
TVOC | 0 | ||
HCHO | 0 | ||
CO2 e | 1 + 0.7759 = 1.7759 | ||
TVOC e | 1 + 0.8252 = 1.8252 | ||
HCHO e | 1 − 0.83396 = 0.16604 | ||
SUMattribute | 1.7759 | 1.8252 | 0.16604 |
Cj– with Equation (42) | 0.6979 | 0.7191 | 0.0742 |
SUM Cj | 1.4912 (for three attributes) (100%) | ||
and with alternative a2 (Table 9a) | |||
wj,CRITIC-- with Equation (43) | 0.46801 | 0.48223 | 0.04976 |
and with alternative a2-2 (Table 9b) | |||
wj,CRITIC – with Equation (43) | 0.48083 | 0.48198 | 0.0372 |
Alternatives | ∆CO2 | TVOC | HCHO |
---|---|---|---|
alternative a1 | |||
xij min(xij) wij,energy | 810 mg/m3 | 787 μg/m3 | 18μg/m3 |
360 mg/m3 | 154μg/m3 | 5.8μg/m3 | |
0.3984 | 0.2744 | 0.3265 | |
alternative a2 | |||
xij min(xij) wij,energy | 376.2 mg/m3 | 167.6 μg/m3 | 10.6μg/m3 |
360 mg/m3 | 154μg/m3 | 5.8 μg/m3 | |
0.6148 | 0.3357 | 0.0585 | |
alternative a3 | |||
xij min(xij) wij,energy | 392.4 mg/m3 | 178.3 μg/m3 | 26.0 μg/m3 |
360 mg/m3 | 154μg/m3 | 5.8 μg/m3 | |
0.5841 | 0.3538 | 0.0621 | |
alternative a4 | |||
xij min(xij) wij,energy | 376.2 mg/m3 | 178.3 μg/m3 | 26.0 μg/m3 |
360 mg/m3 | 154μg/m3 | 5.8 μg/m3 | |
0.7290 | 0.2305 | 0.0404 | |
alternative a5 | |||
xij min(xij) wij,energy | 392.4 mg/m3 | 167.6 μg/m3 | 10.6μg/m3 |
360 mg/m3 | 154μg/m3 | 5.8 μg/m3 | |
0.454567 | 0.462546 | 0.082887 |
Attributes (Pollution Concentration Levels) | ||||||
---|---|---|---|---|---|---|
∆CO2 | TVOC | HCHO | ∆CO2 | TVOC | HCHO | |
(alternative a1) test study [5] concentrationlevel without emission | (alternative a2) minimum concentration level with (e) minimum emission rate levels | |||||
wj,entropy | 0.16706 | 0.44232 | 0.39061 | 0.16706 | 0.44232 | 0.39061 |
sjhealth | 0.01556 | 0.21 | 0.21 | 0.01556 | 0.21 | 0.21 |
wj,CRITIC | – | – | – | 0.46801 | 0.48223 | 0.04976 |
wij,energy | 0.3984 | 0.2744 | 0.3265 | 0.6148 | 0.3357 | 0.0585 |
wj,entropy × sjhealth× wj,CRITIC× wij,energy | 0.00103562 | 0.025488 | 0.026782 | 0.000747946 | 0.0150370 | 0.00023878 |
wij,global | 0.0194279 | 0.478148 | 0.5024236 | 0.0466775 | 0.938422 | 0.0149017 |
(alternative a2-2) test study [5,8] concentration level with minimum emission rate levels | (alternative a3) minimum concentration level; (e) minimum +25% range of emission rate | |||||
wj,entropy | 0.2055 | 0.5895 | 0.20496 | 0.16706 | 0.44232 | 0.39061 |
sjhealth | 0.01556 | 0.21 | 0.21 | 0.01556 | 0.21 | 0.21 |
wj,CRITIC | 0.48083 | 0.48198 | 0.0372 | 0.46801 | 0.48223 | 0.04976 |
wij,energy | 0.3984 | 0.2744 | 0.3265 | 0.5841 | 0.3538 | 0.0621 |
wj,entropy × sjhealth× wj,CRITIC × wij,energy | 0.000612536 | 0.0163725 | 0.0005227 | 0.0007106 | 0.0158478 | 0.00025347 |
wij,global | 0.0349865 | 0.935155 | 0.0298593 | 0.0422678 | 0.9426554 | 0.0150769 |
(alternative a4) minimum concentration level; (e) minimum +25% range of TVOC and HCHO emission rate | (alternative a5) minimum concentration level; (e) minimum +25% range of CO2 emission rate | |||||
wj,entropy | 0.16706 | 0.44232 | 0.39061 | 0.16706 | 0.44232 | 0.39061 |
sjhealth | 0.01556 | 0.21 | 0.21 | 0.01556 | 0.21 | 0.21 |
wj,CRITIC | 0.46801 | 0.48223 | 0.04976 | 0.46801 | 0.48223 | 0.04976 |
wij,energy | 0.7290 | 0.2305 | 0.0404 | 0.5841 | 0.3538 | 0.0621 |
wj,entropy × sjhealth× wj,CRITIC × wij,energy | 0.000886878 | 0.010324785 | 0.000164901 | 0.000710597 | 0.01584780 | 0.000251997 |
wij,global | 0.07795658 | 0.9075486 | 0.014494798 | 0.0422712976 | 0.942738165 | 0.014990546 |
Sub-Index | IEQSub-Component Models | Input Values | Sub-Index (Satisfied Users) ±SD |
---|---|---|---|
Thermal comfort TCindex | Icl = 0.55 clo | 90.0% ± 3.2% | |
PMV (Fanger and ISO 7730) PMV = f(M,Icl,dyn,ta,tr,va, pa,) PDTC = f(PMV) | ta = 24 °C | ||
tr = 24.5 °C | |||
va = 0.15 m/s | |||
RH = 45% | |||
M = 1.1 met | |||
∑IAQindex sub-indices | PDIAQ(CO2) = 395·exp(−15.15·CCO2–0.25) | c = 450 ppm | 85.2% ± 0.6% |
PDIAQ(TVOC) = 405·exp(−11.3·CTVOC–0.25) PMVHCHO = 2∙log(CHCHO/0.01) PDHCHO = 100−95·exp(−0.03353·PMV4− -0.2179·PMV2) | c = 787 μg/m3 c = 18 μg/m3 | 52.0% ± 18.0% 65.8% ± 10.7% | |
∑IAQindex (new) without emission | ∑IAQindex= W1⋅(CO2) + W2⋅(TVOC) + W3·(HCHO) = 0.0194279⋅(85.2) + 0.478148·(52.0) + 0.5024236·(65.8) = = 1.65525708 + 24.863696 + 33.05947288 = 59.58 | 59.58% ± 10.2% | |
∑IAQindex (new) with emission on minimum level | ∑IAQindex = W1⋅(CO2) + W2 ⋅TVOC) + W3 ·(HCHO) = = 0.0349865⋅(85.2) + 0.935155·(52.0) + 0.0298593·(65.8) = 2.980885 + 48.62806 + 1.96474194 = 53.57 | 53.57% ± 16.8% | |
∑IAQindex (old) | IAQVOC = 0.96·IAQ(TVOC)+0.04·IAQ(HCHO) ∑IAQindex = 0.5·IAQ(CO2)+0.5·IAQ(VOC) | 53.0% ± 17.3% 69.1% ± 9.0% | |
Acoustic comfort ACcindex | PDACc = 2·(ActualSound_Pressure_Level(dB(A)− DesignSound_Pressure_Level(dB(A)) Measured actualsound level Designed sound level | 55 dB(A) 45 dB(A) | 80.0% ± 6.7% |
Daylight Lindex | PDL = −0.0175 + 1.0361/{1 + exp(+4.0835·(log10(Emin)–1.8223))} | 455 lux | 98.4% ± 9.0% |
∑IEQindex± SD (new) | W1⋅TCindex + W2⋅∑IAQindex + W3⋅ACccindex+W4⋅Lindex | ||
no emission | 0.25∙90.0 + 0.25∙59.6 + 0.25∙80.0 +0.25∙98.4 = 82.0% | 82.0% ± 3.9% | |
with emission | 0.25∙90.0 + 0.25∙53.6 +0.25∙80.0 +0.25∙98.4 = 80.5% | 80.0% ± 5.12% | |
∑IEQindex± SD (old) | IEQindex = W1⋅TCindex+W2⋅∑IAQindex+W3⋅ACccindex + W4⋅Lindex | 84.4% ± 3.7% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piasecki, M.; Kostyrko, K. Development of Weighting Scheme for Indoor Air Quality Model Using a Multi-Attribute Decision Making Method. Energies 2020, 13, 3120. https://doi.org/10.3390/en13123120
Piasecki M, Kostyrko K. Development of Weighting Scheme for Indoor Air Quality Model Using a Multi-Attribute Decision Making Method. Energies. 2020; 13(12):3120. https://doi.org/10.3390/en13123120
Chicago/Turabian StylePiasecki, Michał, and Krystyna Kostyrko. 2020. "Development of Weighting Scheme for Indoor Air Quality Model Using a Multi-Attribute Decision Making Method" Energies 13, no. 12: 3120. https://doi.org/10.3390/en13123120
APA StylePiasecki, M., & Kostyrko, K. (2020). Development of Weighting Scheme for Indoor Air Quality Model Using a Multi-Attribute Decision Making Method. Energies, 13(12), 3120. https://doi.org/10.3390/en13123120