Investigation and Analysis of R463A as an Alternative Refrigerant to R404A with Lower Global Warming Potential
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jeffrey Kuo, C.-F.; Lin, C.-H.; Lee, M.-H. Analyze the energy consumption characteristics and affecting factors of Taiwan’s convenience stores-using the big data mining approach. Energy Build. 2018, 168, 120–136. [Google Scholar] [CrossRef]
- Shen, H.; Xu, K.; Freihaut, J. A statistical study on energy performance of U.S. convenience stores: Investigation of factors and bench marking on store energy use. Energy Build. 2019, 183, 792–802. [Google Scholar] [CrossRef]
- Tassou, S.A.; Ge, Y.; Hadawey, A.; Marriott, D. Energy consumption and conservation in food retailing. Appl. Therm. Eng. 2011, 31, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.-P.; Hsu, P.-L. The network-based energy management system for convenience stores. Energy Build. 2008, 40, 1437–1445. [Google Scholar] [CrossRef]
- Chou, D.-C.; Chang, C.-S.; Hsu, Y.-Z. Investigation and analysis of power consumption in convenience stores in Taiwan. Energy Build. 2016, 133, 670–687. [Google Scholar] [CrossRef]
- Evans, J.A.; Hammond, E.C.; Gigiel, A.J.; Fostera, A.M.; Reinholdt, L.; Fikiin, K.; Zilio, C. Assessment of methods to reduce the energy consumption of food cold stores. Appl. Therm. Eng. 2014, 62, 697–705. [Google Scholar] [CrossRef]
- Arora, P.; Tyagi, A.; Seshadri, G. Fourth Generation Refrigerant: HFO 1234 yf. Biology 2018, 115, 1497. [Google Scholar] [CrossRef]
- Mota-Babiloni, A.; Navarro-Esbrí, J.; Makhnatch, P.; Molés, F. Refrigerant R32 as lower GWP working fluid in residential air conditioning systems in Europe and the USA. Renew. Sustain. Energy Rev. 2017, 80, 1031–1042. [Google Scholar] [CrossRef]
- Cardoso, B.J.; Lamas, F.B.; Gaspar, A.R.; Ribeiro, J.B. Refrigerants used in the Portuguese food industry: Current status. Int. J. Refrig. 2017, 83, 60–74. [Google Scholar] [CrossRef]
- Sánchez, D.; Cabello, R.; Llopis, R.; Catalán-Gil, J.; Nebot-Andrés, L. Energy assessment and environmental impact analysis of an R134a/R744 cascade refrigeration plant upgraded with the low-GWP refrigerants R152a, R1234ze(E), propane (R290) and propylene (R1270). Int. J. Refrig. 2019, 104, 321–334. [Google Scholar] [CrossRef]
- Calleja-Anta, D.; Nebot-Andrés, L.; Catalán-Gil, J.; Sánchez, D.; Cabello, R.; Llopis, R. Thermodynamic screening of alternative refrigerants for R290 and R600a. Results Eng. 2020, 5, 100081. [Google Scholar] [CrossRef]
- Massuchetto, L.H.P.; Nascimento, R.B.C.d.; Carvalho, S.M.R.d.; Araújo, H.V.d.; d’Angelo, J.V.H. Thermodynamic performance evaluation of a cascade refrigeration system with mixed refrigerants: R744/R1270, R744/R717 and R744/RE170. Int. J. Refrig. 2019, 106, 201–212. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, C.; Liu, H.; Du, P.; Gao, H. Theoretical Investigation on the Properties of R744/R290 Mixtures. Procedia Eng. 2017, 205, 1620–1626. [Google Scholar] [CrossRef]
- Mečárik, K.; Masaryk, M. Thermodynamic properties of refrigerants R11, R12, R13, R14, R22, R23, R113, R114, R500 and R502. Heat Recovery Syst. CHP 1991, 11, 193–197. [Google Scholar] [CrossRef]
- Bao, Z.Y.; Fletcher, D.F.; Haynes, B.S. Flow boiling heat transfer of Freon R11 and HCFC123 in narrow passages. Int. J. Heat Mass Transf. 2000, 43, 3347–3358. [Google Scholar] [CrossRef]
- Chen, S.; Liu, J.; Liu, X.; Hou, Y. An experimental comparison of heat transfer characteristic between R134-a and R22 in spray cooling. Exp. Therm. Fluid Sci. 2015, 66, 206–212. [Google Scholar] [CrossRef]
- Fatouh, M.; Ibrahim, T.A.; Mostafa, A. Performance assessment of a direct expansion air conditioner working with R407C as an R22 alternative. Appl. Therm. Eng. 2010, 30, 127–133. [Google Scholar] [CrossRef]
- Kuczynski, W.; Bohdal, T.; Meyer, J.P.; Denis, A. A regressive model for dynamic instabilities during the condensation of R404A and R507 refrigerants. Int. J. Heat Mass Transf. 2019, 141, 1025–1035. [Google Scholar] [CrossRef]
- Kuczynski, W. Experimental research on condensation of R134a and R404A refrigerants in mini-channels during impulsive instabilities. Part I. Int. J. Heat Mass Transf. 2019, 128, 728–738. [Google Scholar] [CrossRef]
- Kondou, C.; Umemoto, S.; Koyama, S.; Mitooka, Y. Improving the heat dissipation performance of a looped thermosyphon using low-GWP volatile fluids R1234ze(Z) and R1234ze(E) with a super-hydrophilic boiling surface. Appl. Therm. Eng. 2017, 118, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Colombo, L.P.M.; Lucchini, A.; Molinaroli, L. Experimental analysis of the use of R1234yf and R1234ze(E) as drop-in alternatives of R134a in a water-to-water heat pump. Int. J. Refrig. 2020. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Cui, Q.; Wang, Q.; Ning, J.; Guo, J.; Dai, B.; Liu, Y.; Xu, Y. Experimental study on CO2/R32 blends in a water-to-water heat pump system. Appl. Therm. Eng. 2019, 162, 114303. [Google Scholar] [CrossRef]
- Hu, X.; Yang, T.; Meng, X.; Wu, J. Isothermal vapor liquid equilibrium measurements for difluoromethane (R32) + fluoroethane (R161) + trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) ternary mixtures. Int. J. Refrig. 2017, 79, 49–56. [Google Scholar] [CrossRef]
- Ju, F.; Fan, X.; Chen, Y.; Zhang, H.; Wang, T.; Tang, X. Performance assessment of heat pump water heaters with R1233zd(E)/HCs binary mixtures. Appl. Therm. Eng. 2017, 123, 1345–1355. [Google Scholar] [CrossRef]
- Longo, G.A.; Mancin, S.; Righetti, G.; Zilio, C.; Steven Brown, J. Assessment of the low-GWP refrigerants R600a, R1234ze(Z) and R1233zd(E) for heat pump and organic Rankine cycle applications. Appl. Therm. Eng. 2020, 167, 114804. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Y.; Wang, Y.; Wu, X.; Jia, M.; Gong, Y. Experimental Investigation of the Performance of an R1270/CO2 Cascade Refrigerant System. Int. J. Refrig. 2020. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Yin, J. Viscosity of saturated mixtures of 1-hexyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)amide with R600a and R152a. J. Chem. Thermodyn. 2020, 141, 105970. [Google Scholar] [CrossRef]
- Longo, G.A.; Righetti, G.; Zilio, C. Heat-transfer assessment of the low GWP substitutes for traditional HFC refrigerants. Int. J. Heat Mass Transf. 2019, 139, 31–38. [Google Scholar] [CrossRef]
- Shaik, S.V.; Babu, T.P.A. Theoretical Computation of Performance of Sustainable Energy Efficient R22 Alternatives for Residential Air Conditioners. Energy Procedia 2017, 138, 710–716. [Google Scholar] [CrossRef]
- La Rocca, V.; Panno, G. Experimental performance evaluation of a vapour compression refrigerating plant when replacing R22 with alternative refrigerants. Appl. Energy 2011, 88, 2809–2815. [Google Scholar] [CrossRef]
- Kasera, S.; Bhaduri, S.C. Performance of R407C as an Alternate to R22: A Review. Energy Procedia 2017, 109, 4–10. [Google Scholar] [CrossRef]
- Elgendy, E.; Melike, M.; Fatouh, M. Experimental assessment of a split air conditioner working with R-417A under different indoor and outdoor conditions. Int. J. Refrig. 2018, 85, 268–281. [Google Scholar] [CrossRef]
- Fernández-Seara, J.; Uhía, F.J.; Diz, R.; Dopazo, J.A. Vapour condensation of R22 retrofit substitutes R417A, R422A and R422D on CuNi turbo C tubes. Int. J. Refrig. 2010, 33, 148–157. [Google Scholar] [CrossRef]
- Aprea, C.; Maiorino, A. An experimental investigation of the global environmental impact of the R22 retrofit with R422D. Energy 2011, 36, 1161–1170. [Google Scholar] [CrossRef]
- Oruç, V.; Devecioğlu, A.G. Thermodynamic performance of air conditioners working with R417A and R424A as alternatives to R22. Int. J. Refrig. 2015, 55, 120–128. [Google Scholar] [CrossRef]
- Chen, X.; Liu, C.; Yang, J.; Chen, J. Experimental study on R-22, R-427A, R-161 and R-290 in air-source heat pump for space heating at low ambient temperatures. Int. J. Refrig. 2018, 96, 147–154. [Google Scholar] [CrossRef]
- Devecioğlu, A.G.; Oruç, V. The influence of plate-type heat exchanger on energy efficiency and environmental effects of the air-conditioners using R453A as a substitute for R22. Appl. Therm. Eng. 2017, 112, 1364–1372. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, H.; Meng, Z.; Qin, Y. Experimental study on R1234yf/R134a mixture (R513A) as R134a replacement in a domestic refrigerator. Appl. Therm. Eng. 2019, 146, 540–547. [Google Scholar] [CrossRef]
- Makhnatch, P.; Mota-Babiloni, A.; López-Belchí, A.; Khodabandeh, R. R450A and R513A as lower GWP mixtures for high ambient temperature countries: Experimental comparison with R134a. Energy 2019, 166, 223–235. [Google Scholar] [CrossRef]
- Heredia-Aricapa, Y.; Belman-Flores, J.M.; Mota-Babiloni, A.; Serrano-Arellano, J.; García-Pabón, J.J. Overview of low GWP mixtures for the replacement of HFC refrigerants: R134a, R404A and R410A. Int. J. Refrig. 2020, 111, 113–123. [Google Scholar] [CrossRef]
- López-Belchí, A. Assessment of a mini-channel condenser at high ambient temperatures based on experimental measurements working with R134a, R513A and R1234yf. Appl. Therm. Eng. 2019, 155, 341–353. [Google Scholar] [CrossRef]
- Mota-Babiloni, A.; Navarro-Esbrí, J.; Peris, B.; Molés, F.; Verdú, G. Experimental evaluation of R448A as R404A lower-GWP alternative in refrigeration systems. Energy Convers. Manag. 2015, 105, 756–762. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Zhang, Z.; Yao, Y.; Wang, Q. Non-azeotropic refrigerant charge optimization for cold storage unit based on year-round performance evaluation. Appl. Therm. Eng. 2018, 139, 395–401. [Google Scholar] [CrossRef]
- Bortolini, M.; Gamberi, M.; Gamberini, R.; Graziani, A.; Lolli, F.; Regattieri, A. Retrofitting of R404a commercial refrigeration systems using R410a and R407f refrigerants. Int. J. Refrig. 2015, 55, 142–152. [Google Scholar] [CrossRef]
- Mota-Babiloni, A.; Makhnatch, P.; Khodabandeh, R. Recent investigations in HFCs substitution with lower GWP synthetic alternatives: Focus on energetic performance and environmental impact. Int. J. Refrig. 2017, 82, 288–301. [Google Scholar] [CrossRef]
- Mancin, S.; Del Col, D.; Rossetto, L. Partial condensation of R407C and R410A refrigerants inside a plate heat exchanger. Exp. Therm. Fluid Sci. 2012, 36, 149–157. [Google Scholar] [CrossRef]
- Oruç, V.; Devecioğlu, A.G.; Ender, S. Improvement of energy parameters using R442A and R453A in a refrigeration system operating with R404A. Appl. Therm. Eng. 2018, 129, 243–249. [Google Scholar] [CrossRef]
- Mendoza-Miranda, J.M.; Mota-Babiloni, A.; Navarro-Esbrí, J. Evaluation of R448A and R450A as low-GWP alternatives for R404A and R134a using a micro-fin tube evaporator model. Appl. Therm. Eng. 2016, 98, 330–339. [Google Scholar] [CrossRef] [Green Version]
- Makhnatch, P.; Mota-Babiloni, A.; Rogstam, J.; Khodabandeh, R. Retrofit of lower GWP alternative R449A into an existing R404A indirect supermarket refrigeration system. Int. J. Refrig. 2017, 76, 184–192. [Google Scholar] [CrossRef]
- Górny, K.; Stachowiak, A.; Tyczewski, P.; Zwierzycki, W. Lubricity of selected oils in mixtures with the refrigerants R452A, R404A, and R600a. Tribol. Int. 2019, 134, 50–59. [Google Scholar] [CrossRef]
- Devecioğlu, A.G.; Oruç, V. An analysis on the comparison of low-GWP refrigerants to alternatively use in mobile air-conditioning systems. Therm. Sci. Eng. Prog. 2017, 1, 1–5. [Google Scholar] [CrossRef]
- Mota-Babiloni, A.; Haro-Ortuño, J.; Navarro-Esbrí, J.; Barragán-Cervera, Á. Experimental drop-in replacement of R404A for warm countries using the low GWP mixtures R454C and R455A. Int. J. Refrig. 2018, 91, 136–145. [Google Scholar] [CrossRef]
- Xu, S.; Fan, X.; Ma, G. Experimental investigation on heating performance of gas-injected scroll compressor using R32, R1234yf and their 20wt%/80wt% mixture under low ambient temperature. Int. J. Refrig. 2017, 75, 286–292. [Google Scholar] [CrossRef]
- Yang, M.-H.; Yeh, R.-H.; Hung, T.-C. Thermo-economic analysis of the transcritical organic Rankine cycle using R1234yf/R32 mixtures as the working fluids for lower-grade waste heat recovery. Energy 2017, 140, 818–836. [Google Scholar] [CrossRef]
- Xu, X.; Hwang, Y.; Radermacher, R. Performance comparison of R410A and R32 in vapor injection cycles. Int. J. Refrig. 2013, 36, 892–903. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, F.; Liu, Z.; Gu, J.; Zhu, F.; Yuan, Q. Performance Research on Heat Pump Using Blends of R744 with Eco-friendly Working Fluid. Procedia Eng. 2017, 205, 2297–2302. [Google Scholar] [CrossRef]
- Longo, G.A.; Mancin, S.; Righetti, G.; Zilio, C. R1234yf and R1234ze(E) as environmentally friendly replacements of R134a: Assessing flow boiling on an experimental basis. Int. J. Refrig. 2019, 108, 336–346. [Google Scholar] [CrossRef]
- Mylona, S.K.; Hughes, T.J.; Saeed, A.A.; Rowland, D.; Park, J.; Tsuji, T.; Tanaka, Y.; Seiki, Y.; May, E.F. Thermal conductivity data for refrigerant mixtures containing R1234yf and R1234ze(E). J. Chem. Thermodyn. 2019, 133, 135–142. [Google Scholar] [CrossRef]
- Tomassetti, S.; Coccia, G.; Pierantozzi, M.; Di Nicola, G.; Brown, J.S. Vapor phase and two-phase PvTz measurements of difluoromethane + 2,3,3,3-tetrafluoroprop-1-ene. J. Chem. Thermodyn. 2020, 141, 105966. [Google Scholar] [CrossRef]
- Fouad, W.A.; Vega, L.F. Transport properties of HFC and HFO based refrigerants using an excess entropy scaling approach. J. Supercrit. Fluids 2018, 131, 106–116. [Google Scholar] [CrossRef]
- Bell, I.H.; Domanski, P.A.; McLinden, M.O.; Linteris, G.T. The hunt for nonflammable refrigerant blends to replace R-134a. Int. J. Refrig. 2019, 104, 484–495. [Google Scholar] [CrossRef]
- Brignoli, R.; Brown, J.S.; Skye, H.M.; Domanski, P.A. Refrigerant performance evaluation including effects of transport properties and optimized heat exchangers. Int. J. Refrig. 2017, 80, 52–65. [Google Scholar] [CrossRef] [PubMed]
- CAN/ANSI/AHRI540. Performance Rating of Positive Displacement Refrigerant Compressors and Compressor Units; AHRI: Aiken, SC, USA, 2015; Volume 5. [Google Scholar]
- Lumpkin, D.R.; Bahman, A.M.; Groll, E.A. Two-phase injected and vapor-injected compression: Experimental results and mapping correlation for a R-407C scroll compressor. Int. J. Refrig. 2018, 86, 449–462. [Google Scholar] [CrossRef]
- Abas, N.; Kalair, A.R.; Khan, N.; Haider, A.; Saleem, Z.; Saleem, M.S. Natural and synthetic refrigerants, global warming: A review. Renew. Sustain. Energy Rev. 2018, 90, 557–569. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, B.; Li, H.; Zhao, Y.; Wu, W.; Zhong, Q.; Dong, X.; Chen, Y.; Gong, M.; Luo, E. Saturated liquid density equation for pure refrigerants including CFCs, HCFCs, HFCs, HCs, HFOs, HFEs, PFAs and ISs based on the scaling law and the law of rectilinear diameter. Int. J. Refrig. 2018, 87, 65–77. [Google Scholar] [CrossRef]
- Vaghela, J.K. Comparative Evaluation of an Automobile Air—Conditioning System Using R134a and Its Alternative Refrigerants. Energy Procedia 2017, 109, 153–160. [Google Scholar] [CrossRef]
- Llopis, R.; Calleja-Anta, D.; Sánchez, D.; Nebot-Andrés, L.; Catalán-Gil, J.; Cabello, R. R-454C, R-459B, R-457A and R-455A as low-GWP replacements of R-404A: Experimental evaluation and optimization. Int. J. Refrig. 2019, 106, 133–143. [Google Scholar] [CrossRef]
- Wu, X.; Dang, C.; Xu, S.; Hihara, E. State of the art on the flammability of hydrofluoroolefin (HFO) refrigerants. Int. J. Refrig. 2019, 108, 209–223. [Google Scholar] [CrossRef]
- Miyara, A.; Alam, M.J.; Kariya, K. Measurement of viscosity of trans-1-chloro-3,3,3-trifluoropropene (R-1233zd(E)) by tandem capillary tubes method. Int. J. Refrig. 2018, 92, 86–93. [Google Scholar] [CrossRef]
- Domanski, P.A.; Brignoli, R.; Brown, J.S.; Kazakov, A.F.; McLinden, M.O. Low-GWP refrigerants for medium and high-pressure applications. Int. J. Refrig. 2017, 84, 198–209. [Google Scholar] [CrossRef] [PubMed]
Refrigerant | R22 [40] | R407C [41] | R417A [42] | R422A [43] |
---|---|---|---|---|
Composition | R22 | R125/R134a/R32 | R125/R134a/R600 | R125/R134a/R600a |
Mass percentage | 100 | 25/52/23 | 46.6/60/3.4 | 85.1/11.5/3.4 |
Boiling point (°C) | −40.8 | −43.6 | −39.1 | −46.8 |
Critical pressure (kPa) | 4990 | 4620 | 4036 | 3665 |
Critical temperature (°C) | 96.1 | 86.74 | 87 | 71.7 |
ODP | 0.055 | 0 | 0 | 0 |
GWP | 1600 | 1526 | 1950 | 2530 |
Class | A1 | A1 | A1 | A1 |
Lubricant type | MO | MO | MO/AB/POE | MO/AB/POE |
Refrigerant | R422D [44] | R424A [45] | R427A [46] | R453A [47] |
---|---|---|---|---|
Composition | R125/R134a/ R600a | R125/R134a/R600/ R600a/R601a | R125/R134a/ R143a/R32 | R125/R134a/R32/ R227ea/R600a/R601a |
Mass percentage | 62.1/31.5/3.4 | 50.5/47/1/0.9/0.9 | 25/50/10/15 | 20/53.8/20/5/0.6/0.6 |
Boiling point (°C) | −43.5 | −38.7 | −42.7 | −60.13 |
Critical pressure (kPa) | 3795 | 4040 | 4330 | 4530 |
Critical temperature (°C) | 79.6 | 88.8 | 86.8 | 87.9 |
ODP | 0 | 0 | 0 | 0 |
GWP | 2330 | 2440 | 2138 | 1765 |
Class | A1 | A1 | A1 | A1 |
Lubricant type | MO/AB/POE | MO/AB/POE | MO/POE | MO/AB/POE |
Refrigerant | R134A [48] | R450A [49] | R456A [50] | R513A [51] | R515A [50] |
---|---|---|---|---|---|
Composition | R134A | R134A/ R12354ze(E) | R134a/R32/R1234ze (E) | R134A/ R1234yf | R227ea/ R1234ze |
Mass percentage | 100 | 42/58 | 45/6/49 | 44/56 | 12/88 |
Boiling point (°C) | −26.07 | −23.5 | −30.75 | −28.3 | −18.75 |
Critical pressure (kPa) | 4060 | 3814 | 4175 | 3700 | 3555 |
Critical temperature (°C) | 101.06 | 105.87 | 102.65 | 97.7 | 108.65 |
ODP | 0 | 0 | 0 | 0 | 0 |
GWP | 1430 | 547 | 687 | 570 | 387 |
Class | A1 | A1 | A1 | A1 | A1 |
Lubricant type | POE | POE | POE | POE | POE |
Temperature Point | Air Conditioning and Heat Pump | Refrigeration | |||
---|---|---|---|---|---|
Heating | Cooling | Low | Medium | High | |
Suction dew point (°C) | −15.0 | 10.0 | −31.5 | −6.5 | 7.0 |
Discharge dew point (°C) | 35.0 | 46.0 | 40.5 | 43.5 | 54.5 |
Suction return gas temperature (°C) | −4.0 | 21.0 | 4.5 | 18.5 | 18.5 |
Superheat (K) | 11.0 | 11.0 | 11.0 | 11.0 | 11.0 |
Subcooling (K) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Condition | LT | MT | HT | LT | MT | HT | LT | MT | HT |
---|---|---|---|---|---|---|---|---|---|
Refrigerant | R404A [52] | R407A [53] | R407F [54] | ||||||
Composition | R125/R143/R134A | R125/R32/R134A | R125/R32/R134A | ||||||
Mass percentage | 44/52/4 | 40/20/40 | 30/30/40 | ||||||
Boiling point (°C) at 1 kPa | −46.6 | −45.28 | −46.33 | ||||||
Critical pressure (kPa) | 3728 | 4494 | 4754 | ||||||
Critical temperature (°C) | 72.1 | 82 | 82.6 | ||||||
ODP | 0 | 0 | 0 | ||||||
GWP | 3943 | 2107 | 1825 | ||||||
Class | A1 | A1 | A1 | ||||||
Lubricant type | POE | POE | POE | ||||||
Liquid density (kg/m3) at 25 °C | 1044.1 | 1145.1 | 1117.0 | ||||||
Vapor density (kg/m3) at 25 °C | 65.27 | 49.74 | 45.1 | ||||||
Cp liquid (kJ/kg.K) at 25 °C | 1.542 | 1.520 | 1.570 | ||||||
Cp vapor (kJ/kg.K) at 25 °C | 1.221 | 0.829 | 1.180 | ||||||
Liquid conductivity (mW/m.K) at 25 °C | 62.71 | 81.90 | 89.71 | ||||||
Vapor conductivity (mW/m.K) at 25 °C | 17.00 | 13.14 | 14.51 | ||||||
Qevap (kJ/kg) | 83.66 | 139.02 | N/A | 119.21 | 126.89 | 114.83 | 192.46 | 184.93 | 170.29 |
Qcond (kJ/kg) | 159.8 | 198.57 | N/A | 216.04 | 189.24 | 166.05 | 328.41 | 266.99 | 237.2 |
Work (kJ/kg) | 76.14 | 59.55 | N/A | 96.83 | 62.35 | 51.22 | 135.95 | 82.06 | 66.91 |
COPc | 1.099 | 2.335 | N/A | 1.231 | 2.035 | 2.242 | 1.416 | 2.254 | 2.545 |
Evaporator pressure (kPa) | 183.30 | 477.3 | N/A | 140.90 | 392.80 | 676.2 | 149.50 | 414.40 | 714.30 |
Condenser pressure (kPa) | 2197.50 | 2284.10 | N/A | 2103.40 | 2308.40 | 2961.2 | 2101.20 | 2323.80 | 2987.00 |
Evaporator temp glide (°C) | −0.4 | −0.5 | N/A | −3.4 | −3.5 | −3.1 | −5.0 | −4.7 | −4.3 |
Condenser temp glide (°C) | 0.3 | 0.3 | N/A | 4.1 | 3.9 | 3.3 | 4.2 | 4.0 | 3.4 |
Condition | LT | MT | HT | LT | MT | HT | LT | MT | HT |
---|---|---|---|---|---|---|---|---|---|
Refrigerant | R407H [55] | R410A [56] | R442A [57] | ||||||
Composition | R125/R32/R134A | R125/R32 | R125/R32/R1234A/R227ea/R152A | ||||||
Mass percentage | 15/32.5/52.5 | 50/50 | 31/31/30/5/3 | ||||||
Boiling point (°C) | −44.6 | −51.6 | −46.5 | ||||||
Critical pressure (kPa) | 4856 | 4811 | 4760 | ||||||
Critical temperature (°C) | 86.53 | 70.81 | 82.4 | ||||||
ODP | 0 | 0 | 0 | ||||||
GWP | 1400 | 1900 | 1888 | ||||||
Class | A1 | A1 | A1 | ||||||
Lubricant type | POE | POE | POE | ||||||
Liquid density (kg/m3) at 25 °C | 1111.2 | 1058.6 | 1108.5 | ||||||
Vapor density (kg/m3) at 25 °C | 41.86 | 65.97 | 47.4 | ||||||
Cp liquid (kJ/kg.K) at 25 °C | 1.585 | 1.708 | 1.579 | ||||||
Cp vapor (kJ/kg.K) at 25 °C | 1.176 | 1.445 | 1.184 | ||||||
Liquid conductivity (mW/m.K) at 25 °C | 90.2 | 89.19 | 85.83 | ||||||
Vapor conductivity (mW/m.K) at 25 °C | 14.58 | 15.73 | 14.76 | ||||||
Qevap (kJ/kg) | 148.59 | 155.8 | 142.95 | 139.33 | 188.53 | N/A | 191.98 | 184.39 | 169.63 |
Qcond (kJ/kg) | 263.52 | 229.56 | 203.59 | 248.17 | 271.65 | N/A | 328.25 | 266.68 | 236.71 |
Work (kJ/kg) | 114.94 | 73.76 | 60.64 | 108.84 | 83.12 | N/A | 136.27 | 82.29 | 67.07 |
COPc | 1.293 | 2.112 | 2.357 | 1.28 | 2.268 | N/A | 1.409 | 2.241 | 2.529 |
Evaporator pressure (kPa) | 135.00 | 379.10 | 656.8 | 247.60 | 636.30 | N/A | 150.90 | 417.50 | 718.90 |
Condenser pressure (kPa) | 2060.40 | 2265.80 | 2915.4 | 2844.50 | 3013.70 | N/A | 2118.90 | 2342.40 | 3008.20 |
Evaporator temp glide (°C) | −3.9 | −4.1 | −3.7 | 0.0 | −0.1 | N/A | −5.2 | −4.9 | −4.5 |
Condenser temp glide (°C) | 4.7 | 4.5 | 3.9 | 0.1 | 0.1 | N/A | 4.4 | 4.2 | 3.6 |
Condition | LT | MT | HT | LT | MT | HT | LT | MT | HT |
---|---|---|---|---|---|---|---|---|---|
Refrigerant | R448A [58] | R449A [59] | R452A [60] | ||||||
Composition | R125/R32/R134A/ R1234yf/R12354ze(E) | R125/R32/R134A/R1234yf | R125/R32/R1234yf | ||||||
Mass percentage | 26/26/20/21/7 | 24.7/24.3/25.7/25.3 | 59/11/30 | ||||||
Boiling point (°C) | −40.1 | −45.95 | −47.2 | ||||||
Critical pressure (kPa) | 4675 | 4662 | 4014 | ||||||
Critical temperature (°C) | 83.66 | 83.85 | 75.05 | ||||||
ODP | 0 | 0 | 0 | ||||||
GWP | 1273 | 1282 | 1945 | ||||||
Class | A1 | A1 | A1 | ||||||
Lubricant type | POE | POE | POE | ||||||
Liquid density (kg/m3) at 25 °C | 1092.3 | 1097.1 | 1125.5 | ||||||
Vapor density (kg/m3) at 25 °C | 48.5 | 49.32 | 64.10 | ||||||
Cp liquid (kJ/kg.K) at 25 °C | 1.553 | 1.55 | 1.470 | ||||||
Cp vapor (kJ/kg.K) at 25 °C | 1.165 | 1.162 | 1.100 | ||||||
Liquid conductivity (mW/m.K) at 25 °C | 80.60 | 80.00 | 66.80 | ||||||
Vapor conductivity (mW/m.K) at 25 °C | 14.60 | 14.67 | 14.80 | ||||||
Qevap (kJ/kg) | 179.93 | 172.76 | 158.78 | 178.08 | 170.94 | 157.04 | 83.97 | 92.46 | 82.56 |
Qcond (kJ/kg) | 305.77 | 249.11 | 221.17 | 301.63 | 245.91 | 218.33 | 159.88 | 141.82 | 122.68 |
Work (kJ/kg) | 125.84 | 76.35 | 62.39 | 123.55 | 74.98 | 61.3 | 75.91 | 49.36 | 40.12 |
COPc | 1.43 | 2.263 | 2.545 | 1.441 | 2.28 | 2.562 | 1.106 | 1.873 | 2.058 |
Evaporator pressure (kPa) | 150.60 | 410.60 | 701.90 | 150.70 | 409.60 | 699.00 | 168.20 | 443.70 | 742 |
Condenser pressure (kPa) | 2051.80 | 2265.90 | 2903.70 | 2027.80 | 2240.20 | 2871.90 | 2221.20 | 2423.00 | 3021.1 |
Evaporator temp glide (°C) | −4.9 | −4.7 | −4.4 | −4.4 | −4.3 | −4 | −1.9 | −2.2 | −2 |
Condenser temp glide (°C) | 4.5 | 4.3 | 3.7 | 4.2 | 4.0 | 3.4 | 3.1 | 2.9 | 2.4 |
Condition | LT | MT | HT | LT | MT | HT |
---|---|---|---|---|---|---|
Refrigerant | R453A [57], | R463A [50] | ||||
Composition | R125/R32/R134A/R227ea/ R600/R601A | R125/R32/R134A/R1234yf/R744 | ||||
Mass percentage | 20/20/53.8/5/0.6/0.6 | 30/36/14/14/6 | ||||
Boiling point (°C) | −42.2 | −60.13 | ||||
Critical pressure (kPa) | 4530 | 5283 | ||||
Critical temperature (°C) | 87.9 | 73.15 | ||||
ODP | 0 | 0 | ||||
GWP | 1765 | 1377 | ||||
Class | A1 | A1 | ||||
Lubricant type | POE | POE | ||||
Liquid density (kg/m3) at 25 °C | 1136 | 1051.4 | ||||
Vapor density (kg/m3) at 25 °C | 41.69 | 57.67 | ||||
Cp liquid (kj/kg.K) at 25 °C | 1.5209 | 1.694 | ||||
Cp vapor (kj/kg.K) at 25 °C | 1.337 | 1.256 | ||||
Liquid conductivity (mW/m.K) at 25 °C | 83.30 | 87.16 | ||||
Vapor conductivity (mW/m.K) at 25 °C | 15.72 | 15.47 | ||||
Qevap (kJ/kg) | 184.91 | 178.36 | 165.49 | 194.65 | 186.07 | 168.25 |
Qcond (kJ/kg) | 312 | 255.92 | 228.96 | 340.43 | 273.5 | 239.3 |
Work (kJ/kg) | 127.56 | 77.56 | 63.47 | 145.78 | 87.43 | 71.05 |
COPc | 1.45 | 2.3 | 2.607 | 1.335 | 2.128 | 2.368 |
Evaporator pressure (kPa) | 121.00 | 342.10 | 595.7 | 209.10 | 554.10 | 934.70 |
Condenser pressure (kPa) | 1808.70 | 2002.50 | 2584.3 | 2748.70 | 2988.10 | 3784.70 |
Evaporator temp glide (°C) | −5.2 | −5.1 | −4.7 | −6 | −6.1 | −5.6 |
Condenser temp glide (°C) | 5.0 | 4.8 | 4.2 | 6.5 | 6.2 | 4.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saengsikhiao, P.; Taweekun, J.; Maliwan, K.; Sae-ung, S.; Theppaya, T. Investigation and Analysis of R463A as an Alternative Refrigerant to R404A with Lower Global Warming Potential. Energies 2020, 13, 1514. https://doi.org/10.3390/en13061514
Saengsikhiao P, Taweekun J, Maliwan K, Sae-ung S, Theppaya T. Investigation and Analysis of R463A as an Alternative Refrigerant to R404A with Lower Global Warming Potential. Energies. 2020; 13(6):1514. https://doi.org/10.3390/en13061514
Chicago/Turabian StyleSaengsikhiao, Piyanut, Juntakan Taweekun, Kittinan Maliwan, Somchai Sae-ung, and Thanansak Theppaya. 2020. "Investigation and Analysis of R463A as an Alternative Refrigerant to R404A with Lower Global Warming Potential" Energies 13, no. 6: 1514. https://doi.org/10.3390/en13061514
APA StyleSaengsikhiao, P., Taweekun, J., Maliwan, K., Sae-ung, S., & Theppaya, T. (2020). Investigation and Analysis of R463A as an Alternative Refrigerant to R404A with Lower Global Warming Potential. Energies, 13(6), 1514. https://doi.org/10.3390/en13061514