Temperature-Dependent Analysis of Solid-State Photon-Enhanced Thermionic Emission Solar Energy Converter
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Singh, P.; Ravindra, N.M. Temperature dependence of solar cell performance-an analysis. Sol. Energy Mater. Sol. Cells 2012, 101, 36–45. [Google Scholar] [CrossRef]
- Landis, G.; Rafaelle, R.; Merritt, D. High temperature solar cell development. In Proceedings of the 19th European Photovoltaic Science and Engineering Conference, Paris, France, 7–11 June 2004. [Google Scholar]
- Green, M.A. General Temperature Dependence of Solar Cell Performance and Implications for Device Modelling. Prog. Photovolt. Res. Appl. 2003, 11, 333–340. [Google Scholar] [CrossRef]
- Wysocki, J.J.; Rappaport, P. Effect of temperature on photovoltaic solar energy conversion. J. Appl. Phys. 1960, 31, 571–578. [Google Scholar] [CrossRef]
- Fan, J.C.C. Theoretical temperature dependence of solar cell parameters. Sol. Cells 1986, 17, 309–315. [Google Scholar] [CrossRef]
- Geisz, J.F.; Steiner, M.A.; García, I.; Kurtz, S.R.; Friedman, D.J. Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells. Appl. Phys. Lett. 2013, 103, 041118. [Google Scholar] [CrossRef] [Green Version]
- Sulima, O.V.; Sims, P.E.; Cox, J.A.; Mauk, M.G.; Mueller, R.L.; Reedy, R.C., Jr.; Khammadov, A.M.; Paulson, P.D.; Landis, G.A. High Temperature AlGaP/GaP Solar Cells for NASA Space Missions. In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 11–18 May 2003. [Google Scholar]
- Neufeld, C.J.; Toledo, N.G.; Cruz, S.C.; Iza, M.; DenBaars, S.P.; Mishra, U.K. High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap. Appl. Phys. Lett. 2008, 93, 143502. [Google Scholar] [CrossRef]
- Raffaelle, R.; Bailey, S.; Neudeck, P.; Okojie, R.; Schanabel, C.; Tabib-Azar, M.; Scheiman, D.; Jenkins, P.; Hubbard, S. Optical and Electrical Characterization of SiC Devices. In Proceedings of the 28th IEEE Photovoltaic Specialists Conference, Anchorage, AK, USA, 15–22 September 2000. [Google Scholar]
- Schwede, J.W.; Bargatin, I.; Riley, D.C.; Hardin, B.E.; Rosenthal, S.J.; Sun, Y.; Schmitt, F.; Pianetta, P.; Howe, R.T.; Shen, Z.X.; et al. Photon-enhanced thermionic emission for solar concentrator systems. Nat. Mater. 2010, 9, 762–767. [Google Scholar] [CrossRef]
- Schwede, J.W.; Sarmiento, T.; Narasimhan, V.K.; Rosenthal, S.J.; Riley, D.C.; Schmitt, F.; Bargatin, I.; Sahasrabuddhe, K.; Howe, R.T.; Harris, J.S.; et al. Photon-enhanced thermionic emission from heterostructures with low interface recombination. Nat. Commun. 2013, 4, 1576. [Google Scholar] [CrossRef] [Green Version]
- Kuriki, M.; Shonaka, C.; Lijima, H.; Kubo, D.; Okamoto, H.; Higaki, H.; Ito, K.; Tamamoto, M.; Konomi, T.; Okumi, S.; et al. Dark-lifetime degradation of GaAs photo-cathode at higher temperature. Nucl. Instrum. Methods Phys. Res. A 2011, 637, S87. [Google Scholar] [CrossRef]
- Segev, G.; Weisman, D.; Rosenwaks, Y.; Kribus, A. Negative space charge effects in photon-enhanced thermionic emission solar converters. Appl. Phys. Lett. 2015, 107, 013908. [Google Scholar] [CrossRef] [Green Version]
- Bellucci, A.; Calvani, P.; Girolami, M.; Trucch, D.M. Defect engineering of diamond cathodes for high temperature solar cells. In Proceedings of the IEEE 15th International Conference on Environment and Electrical Engineering, Rome, Italy, 10–12 June 2015. [Google Scholar]
- Girolami, M.; Criante, L.; Fonzo, F.D.; Turco, S.L.; Mezzetti, A.; Notargiacomo, A.; Pea, M.; Bellucci, A.; Calvani, P.; Valentini, V.; et al. Graphite distributed electrodes for diamond-based photon-enhanced thermionic emission solar cells. Carbon 2017, 111, 48–53. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, W.; Tang, W.; Sun, C. High-temperature solar cell for concentrated solar power hybrid systems. Appl. Phys. Lett. 2013, 103, 083902. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, W.; Sun, C. Diffusion emission model for solid-state photon-enhanced thermionic emission solar energy converters. Mat. Sci. Semicon. Proc. 2015, 35, 120. [Google Scholar] [CrossRef]
- Nelson, J. The Physics of Solar Cells; Imperial College Press: London, UK, 2003; pp. 112–170. [Google Scholar]
- Hu, C.; White, R.M. Solar Cells; McGraw-Hill: New York, NY, USA, 1983; p. 21. [Google Scholar]
- Avasthi, S.; McClain, W.E.; Man, G.; Kahn, A.; Schwartz, J.; Sturm, J.C. Hole-blocking titanium-oxide/silicon heterojunction and its application to photovoltaics. Appl. Phys. Lett. 2013, 102, 203901. [Google Scholar] [CrossRef] [Green Version]
- Mahan, G.D.; Woods, L.M. Multilayer Thermionic Refrigeration. Phys. Rev. Lett. 1998, 80, 4016–4019. [Google Scholar] [CrossRef] [Green Version]
- Segev, G.; Kribus, A.; Rosenwaks, Y. High performance isothermal photo-thermionic solar converters. Sol. Energy Mater. Sol. Cells 2013, 113, 114–123. [Google Scholar] [CrossRef]
- Varpula, A.; Prunnila, M. Diffusion-emission theory of photon enhanced thermionic emission solar energy harvesters. J. Appl. Phys. 2012, 112, 044506. [Google Scholar] [CrossRef] [Green Version]
- Sahasrabuddhe, K.; Schwede, J.W.; Bargatin, I.; Jean, J.; Howe, R.T.; Shen, Z.X.; Melosh, N.A. A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission. J. Appl. Phys. 2012, 112, 094907. [Google Scholar] [CrossRef] [Green Version]
- Nelson, R.J.; Sobers, R.G. Interfacial recombination velocity in GaAlAs/GaAs heterostructures. Appl. Phys. Lett. 1978, 32, 761. [Google Scholar] [CrossRef]
- Olson, J.M.; Ahrenkiel, R.K.; Dunlavy, D.J.; Keyes, B.; Kibbler, A.E. Ultralow recombination velocity at Ga0.5In0.5P/GaAs hetero-interfaces. Appl. Phys. Lett. 1989, 55, 1208. [Google Scholar] [CrossRef]
- Wolf, M. The influence of heavy doping effects on silicon solar cell performance. Sol. Cells 1986, 17, 53–63. [Google Scholar] [CrossRef]
- Szmyd, D.M.; Hanna, M.C.; Majerfeld, A. Heavily doped GaAs: Se. II. Electron mobility. J. Appl. Phys. 1990, 68, 2376. [Google Scholar] [CrossRef]
- Bergman, J.P.; Hallin, C.; Janzén, E. Temperature dependence of the minority carrier lifetime in GaAs/AlGaAs double heterostructures. J. Appl. Phys. 1995, 78, 4808. [Google Scholar] [CrossRef]
- Loferski, J.J. Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion. J. Appl. Phys. 1956, 27, 777. [Google Scholar] [CrossRef]
- Braun, A.; Katz, E.A.; Gordon, J.M. Basic aspects of the temperature coefficients of concentrator solar cell performance parameters. Prog. Photovolt. Res. Appl. 2013, 21, 1087–1094. [Google Scholar] [CrossRef]
- Mesrane, A.; Mahrane, A.; Rahmoune, F.; Oulebsir, A. Analytical study on the temperature dependence of InGaN p–n junction solar cell under concentrated light intensity. Appl. Phys. A 2017, 123, 136. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Cao, W.W.; Xu, P.; Zhu, B.L.; Bai, Y.L.; Wang, B.; Qin, J.J.; Bai, X.H. Temperature-Dependent Analysis of Solid-State Photon-Enhanced Thermionic Emission Solar Energy Converter. Energies 2020, 13, 1554. https://doi.org/10.3390/en13071554
Yang Y, Cao WW, Xu P, Zhu BL, Bai YL, Wang B, Qin JJ, Bai XH. Temperature-Dependent Analysis of Solid-State Photon-Enhanced Thermionic Emission Solar Energy Converter. Energies. 2020; 13(7):1554. https://doi.org/10.3390/en13071554
Chicago/Turabian StyleYang, Yang, Wei Wei Cao, Peng Xu, Bing Li Zhu, Yong Lin Bai, Bo Wang, Jun Jun Qin, and Xiao Hong Bai. 2020. "Temperature-Dependent Analysis of Solid-State Photon-Enhanced Thermionic Emission Solar Energy Converter" Energies 13, no. 7: 1554. https://doi.org/10.3390/en13071554
APA StyleYang, Y., Cao, W. W., Xu, P., Zhu, B. L., Bai, Y. L., Wang, B., Qin, J. J., & Bai, X. H. (2020). Temperature-Dependent Analysis of Solid-State Photon-Enhanced Thermionic Emission Solar Energy Converter. Energies, 13(7), 1554. https://doi.org/10.3390/en13071554