Characterizing Variations in the Indoor Temperature and Humidity of Guest Rooms with an Occupancy-Based Climate Control Technology
Abstract
:1. Introduction
2. Methods
2.1. Case-Study Hotel Description
2.2. Temperature, Humidity, and Occupancy Measurements
2.3. Thermal Comfort Survey
3. Results
3.1. Classification of the Season
3.2. Thermal Comfort Survey
3.3. Variations by Occupancy Modes
3.4. Variations by Location of Guest Rooms
4. Discussion
4.1. Time-of-Day Analysis
4.2. Relationship between Outdoor and Indoor Temperature
4.3. Relationship between Outdoor and Indoor Humidity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- EIA. 2012 Commercial Buildings Energy Consumption Survey (CBECS) Energy Usage Summary. Table 1. Total Energy Consumption by Energy Source; U.S. Energy Information Administration: Washington, DC, USA, 2017. Available online: https://www.eia.gov/consumption/commercial/reports/2012/energyusage/ (accessed on 3 March 2017).
- Woolley, J.; Peffer, T. Occupancy sensing adaptive thermostat controls: A market review and observations from multiple field installations in university residence halls. In Proceedings of the 2012 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, USA, 12–17 August 2012; Volume 7, pp. 298–311. [Google Scholar]
- HMG. Guest Room Occupancy Controls, 2013 California Building Energy Efficiency Standards, Codes and Standards Enhancement Initiative (CASE); Heschong Mahone Group, Inc.: Gold River, CA, USA, 2011. [Google Scholar]
- Sullivan, G.P.; Blanchard, J. Guest Room HVAC Occupancy-Based Control Technology Demonstration; Pacific Northwest National Laboratory: Richland, WA, USA, 2012. [Google Scholar]
- Fountain, M.; Brager, G.; Arens, E.; Bauman, F.; Benton, C. Comfort control for short-term occupancy. Energy Build. 1994, 21, 1–13. [Google Scholar] [CrossRef]
- ASHRAE. ANSI/ASHRAE/IESNA Standard 90.1-2016, Energy Standard for Buildings Except Low-Rise Residential Buildings; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2016. [Google Scholar]
- Guo, W.; Nutter, D.W. Setback and setup temperature analysis for a classic double-corridor classroom building. Energy Build. 2010, 42, 189–197. [Google Scholar] [CrossRef]
- Kim, H.; Oldham, E. Energy performance of an occupancy-based climate control technology in guest rooms. Ashrae Trans 2019, 125, 703–717. [Google Scholar]
- Frey, D.; Arent, J. Card-Key Guestroom Controls Study; Emerging Technologies Program Application Assessment Report #0801 prepared for Pacific Gas and Electric Company; Architectural Energy Corporation: Boulder, CO, USA, 2009. [Google Scholar]
- Qi, M.; Li, X.; Zhu, E.; Shi, Y. Evaluation of perceived indoor environmental quality of five-star hotels in China: An application of online review analysis. Build. Environ. 2017, 111, 1–9. [Google Scholar] [CrossRef]
- Bohdanowicz, P.; Martinac, I. Thermal comfort and energy savings in the hotel industry. In Proceedings of the 16th International Congress of Biometeorology, Kansas City, MO, USA, 27 October–1 November 2002. [Google Scholar]
- Yan, D.; O’Brien, W.; Hong, T.; Feng, X.; Gunay, H.B.; Tahmasebi, F.; Mahdavi, A. Occupant behavior modeling for building performance simulation: Current state and future challenges. Energy Build. 2015, 107, 264–278. [Google Scholar] [CrossRef] [Green Version]
- Salimi, S.; Hammad, A. Critical review and research roadmap of office building energy management based on occupancy monitoring. Energy Build. 2019, 182, 214–241. [Google Scholar] [CrossRef]
- Mirakhorli, A.; Dong, B. Occupancy behavior based model predictive control for building indoor climate—A critical review. Energy Build. 2016, 129, 499–513. [Google Scholar] [CrossRef]
- Lau, H. Field performance of a card key energy saving system for hotels and motels. In Proceedings of the 2000 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, USA, 20–25 August 2000; Volume 3, pp. 219–228. [Google Scholar]
- Pistochini, T.; Heinemeier, K.; DeJean, D. Hotel Guest Room Energy Controls; Emerging Technologies Program Final Report prepared for San Diego Gas & Electric; California Lighting Technology Center: Davis, CA, USA, 2008. [Google Scholar]
- Frank, D. Packaged Terminal Heat Pumps and Room-Based Occupancy Sensors M&V: Best Western Peppertree Airport Inn. Spokane, WA; Report Prepared for Bonneville Power Administration; EMP2, Inc.: Richland, WA, USA, 2010. [Google Scholar]
- Asadi, E.; Costa, J.J.; da Silva, M.G. Indoor air quality audit implementation in a hotel building in Portugal. Build. Environ. 2011, 46, 1617–1623. [Google Scholar] [CrossRef]
- Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; Rosenberg, M.; et al. Department of Energy Commercial Reference Building Models of the National Building Stock; National Renewable Energy Laboratory: Golden, CO, USA, 2011. [Google Scholar]
- Kim, H.; Oldham, E.; Haberl, J. Field investigation of an occupancy-based climate control technology: IEQ performance during the cooling season. In Proceedings of the 14th International Conference on Indoor Air Quality and Climate-Indoor Air 2016, Ghent, Belgium, 3–8 July 2016; p. 495. [Google Scholar]
- Kim, H.; Oldham, E. Long-term field investigation and modeling of electricity end-use patterns in hotel guest rooms. Energy Build. 2017, 155, 414–424. [Google Scholar] [CrossRef]
- NCDC. Quality Controlled Local Climatological Data; National Oceanic and Atmospheric Administration, National Climatic Data Center: Washington, DC, USA, 2016. Available online: http://www.ncdc.noaa.gov/qclcd/QCLCD?prior=N (accessed on 7 March 2017).
- Duarte, C.; Wymelenberg, K.V.D.; Rieger, C. Revealing occupancy patterns in an office building through the use of occupancy sensor data. Energy Build. 2013, 67, 587–595. [Google Scholar] [CrossRef]
- Pritoni, M.; Woolley, J.M.; Modera, M.P. Do occupancy-responsive learning thermostats save energy? A field study in university residence halls. Energy Build. 2016, 127, 469–478. [Google Scholar] [CrossRef]
- Yun, J.; Lee, S.S. Human movement detection and identification using pyroelectric infrared sensors. Sensors 2014, 14, 8057–8081. [Google Scholar] [CrossRef] [PubMed]
- Labeodan, T.; Zeiler, W.; Boxem, G.; Zhao, Y. Occupancy measurement in commercial office buildings for demand-driven control applications—A survey and detection system evaluation. Energy Build. 2015, 93, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, T.; Dublon, G.; Savvides, A. A survey of human-sensing: Methods for detecting presence, count, location, track, and identity. ACM Comput. Surveys 2010, 5, 59–69. [Google Scholar]
- Guo, X.; Tiler, D.K.; Henze, G.P.; Waters, C.E. The performance of occupancy-based lighting control systems: A review. Lighting Res. Technol. 2010, 42, 415–431. [Google Scholar] [CrossRef]
- ASHRAE. ASHRAE/CIBSE/USGBC Performance Measurement Protocols for Commercial Buildings; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2010. [Google Scholar]
- ASHRAE. ANSI/ASHRAE Standard 55-2017, Thermal Environmental Conditions for Human Occupancy; American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2017. [Google Scholar]
- Wang, Z.; de Dear, R.; Luo, M.; Lin, B.; He, Y.; Ghahramani, A.; Zhu, Y. Individual difference in thermal comfort: A literature review. Build. Environ. 2018, 138, 181–193. [Google Scholar] [CrossRef]
- Sterling, E.; Arundel, A.; Sterling, T. Criteria for human exposure to humidity in occupied buildings. ASHRAE Trans. 1985, 91, 611–622. [Google Scholar]
- Derby, M.; Pasch, R. Effects of low humidity on health, comfort and IEQ. ASHRAE J. 2017, 59, 45–51. [Google Scholar]
- Abushakra, B.; Haberl, J.; Claridge, D.; Sreshthaputra, A. Compilation of Diversity Factors and Schedules for Energy and Cooling Load Calculations; Final Report on ASHRAE Research Project 1092-RP; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2001. [Google Scholar]
- Haberl, J.; Abbas, M. Development of graphical indices for viewing building energy data: Part 1. ASME J. Sol. Energy Eng. 1998, 120, 156–161. [Google Scholar] [CrossRef]
- Kempton, W. Two Theories of Home Heat Control. Cogn. Sci. 1986, 10, 75–90. [Google Scholar] [CrossRef]
- Nguyen, J.; Schwartz, J.; Dockery, D. The relationship between indoor and outdoor temperature, apparent temperature, relative humidity, and absolute humidity. Indoor Air 2014, 24, 103–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Sensor Type | Accuracy | Range |
---|---|---|---|
Air temperature (°C) | Thermistor | ±0.21 °C (from 0° to 50 °C) | −20 to 70 °C |
Relative humidity (%) | Capacity polymer sensor | ±2% RH (from 20% to 80% RH) | 1% to 90% |
Occupancy (% occupied) | Passive Infrared (PIR) sensor | 102° (±51°) horizontal; 92° (±46°) vertical | Max 12 m |
Room ID | Heating Season (°C) | Cooling Season (°C) | Transitional Season (°C) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Checked-In1 | Checked-Out | Checked-In1 | Checked-Out | Checked-In1 | Checked-Out | ||||||
Occ | UnOcc | Occ | UnOcc | Occ | UnOcc | ||||||
Floor | Orientation2 | ||||||||||
1 | 6 | NW | 23.4 (2.8) | 21.7 (2.0) | 18.9 (1.7) | 21.1 (1.3) | 20.6 (1.0) | 19.0 (1.4) | 23.1 (2.5) | 22.3 (2.0) | 20.8 (1.9) |
2 | 6 | SE | 23.2 (2.0) | 22.9 (2.0) | 20.7 (1.7) | 24.0 (1.0) | 23.9 (0.7) | 23.6 (0.9) | 24.5 (1.9) | 24.1 (1.7) | 21.7 (1.3) |
3 | 6 | NW | 23.9 (2.2) | 22.5 (1.5) | 19.0 (2.3) | 23.4 (1.7) | 23.4 (1.0) | 23.2 (1.0) | 24.1 (2.3) | 23.1 (1.1) | 21.9 (1.2) |
4 | 6 | SE | 24.6 (3.6) | 23.7 (2.6) | 20.5 (1.8) | 22.7 (1.3) | 23.1 (1.0) | 22.2 (0.8) | 23.7 (2.5) | 23.5 (1.8) | 21.9 (1.4) |
5 | 6 | W | 23.7 (1.8) | 22.7 (1.6) | 20.1 (2.3) | 24.4 (1.6) | 24.0 (0.9) | 23.6 (0.7) | 23.5 (1.2) | 23.4 (0.8) | 23.1 (0.9) |
6 | 6 | SE | 23.6 (2.3) | 23.0 (1.6) | 21.7 (1.4) | 22.3 (1.1) | 22.3 (0.8) | 21.8 (0.6) | 23.2 (1.6) | 23.4 (1.4) | 22.3 (1.2) |
7 | 6 | E | 23.6 (2.1) | 22.8 (1.4) | 19.7 (2.5) | 24.2 (1.4) | 24.4 (1.0) | 23.7 (1.1) | 23.9 (1.7) | 23.8 (1.2) | 22.4 (0.9) |
8 | 6 | E | 23.7 (2.2) | 23.3 (1.7) | 20.9 (2.1) | 23.4 (1.4) | 24.0 (1.0) | 23.6 (0.9) | 23.3 (1.3) | 23.4 (1.0) | 22.9 (0.8) |
9 | 6 | W | 24.1 (1.8) | 23.5 (1.5) | 22.8 (1.1) | 25.4 (1.5) | 24.9 (1.2) | 22.5 (1.1) | 25.5 (1.6) | 24.8 (1.2) | 24.4 (0.9) |
10 | 6 | E | 23.6 (1.7) | 23.4 (1.6) | 21.1 (1.5) | 23.4 (1.5) | 24.0 (1.2) | 24.4 (0.9) | 24.2 (1.3) | 24.1 (1.0) | 23.0 (0.9) |
11 | 6 | E | 23.2 (1.9) | 22.4 (1.3) | 20.6 (1.7) | 23.1 (1.0) | 23.1 (0.8) | 22.9 (0.6) | 23.4 (1.4) | 23.2 (1.1) | 22.4 (0.9) |
12 | 6 | W | 23.5 (1.6) | 23.3 (1.6) | 22.4 (2.3) | 24.5 (1.1) | 24.6 (1.1) | 24.1 (2.3) | 23.9 (1.2) | 23.6 (1.2) | 23.4 (0.6) |
13 | 6 | E | 22.9 (1.8) | 22.4 (1.5) | 20.2 (2.0) | 21.4 (1.5) | 21.8 (0.8) | 21.9 (0.6) | 23.5 (1.5) | 22.9 (1.3) | 22.0 (1.2) |
14 | 6 | W | 22.6 (1.6) | 21.9 (1.6) | 20.2 (2.3) | 24.5 (1.0) | 24.5 (0.7) | 25.5 (0.8) | 23.5 (1.1) | 23.5 (0.8) | 23.4 (0.9) |
15 | 10 | NW | 23.2 (1.9) | 21.7 (1.6) | 18.7 (2.8) | 22.2 (1.6) | 22.1 (1.4) | 21.1 (1.4) | 22.4 (2.0) | 21.7 (1.9) | 20.8 (2.3) |
16 | 10 | SE | 24.0 (1.4) | 23.4 (1.4) | 20.7 (2.3) | 24.4 (1.2) | 25.0 (1.1) | 26.2 (0.9) | 24.9 (1.2) | 24.8 (1.1) | 23.3 (1.5) |
17 | 10 | SE | 23.1 (1.7) | 22.8 (1.2) | 20.7 (2.1) | 23.3 (1.3) | 23.2 (0.9) | 23.5 (0.9) | 23.3 (1.3) | 23.3 (1.3) | 22.7 (0.8) |
18 | 10 | E | 23.7 (2.2) | 22.8 (1.9) | 19.9 (2.6) | 24.2 (1.2) | 25.1 (1.3) | 25.5 (1.4) | 24.0 (1.4) | 24.1 (1.1) | 23.4 (1.4) |
19 | 10 | W | 24.5 (1.9) | 23.7 (1.6) | 20.4 (2.8) | 25.6 (1.5) | 25.4 (1.3) | 27.5 (1.5) | 24.6 (1.2) | 24.5 (0.9) | 23.7 (1.1) |
20 | 10 | W | 24.5 (1.8) | 23.4 (1.4) | 20.3 (2.2) | 26.1 (1.4) | 26.1 (1.3) | 28.1 (1.4) | 24.9 (1.6) | 24.5 (1.3) | 23.8 (1.2) |
AVG3 | 23.7 (2.0) | 23.0 (1.6) | 20.7 (2.0) | 23.9 (1.3) | 24.0 (1.0) | 24.1 (1.0) | 24.0 (1.5) | 23.8 (1.2) | 22.9 (1.1) |
Room ID | Floor | Orientation2 | Heating Season (%RH) | Cooling Season (%RH) | Transitional Season (%RH) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Checked-In1 | Checked-Out | Checked-In1 | Checked-Out | Checked-In1 | Checked-Out | ||||||
Occ | UnOcc | Occ | UnOcc | Occ | UnOcc | ||||||
1 | 6 | NW | 36.0 (11.4) | 38.0 (11.0) | 36.0 (12.1) | 56.0 (5.7) | 56.2 (3.8) | 60.8 (4.9) | 43.3 (10.7) | 43.8 (9.6) | 55.3 (9.7) |
2 | 6 | SE | 39.5 (9.1) | 38.1 (9.1) | 33.8 (10.5) | 50.4 (4.2) | 49.4 (3.8) | 48.8 (4.3) | 47.2 (7.8) | 46.5 (6.9) | 47.8 (7.9) |
3 | 6 | NW | 38.9 (9.1) | 38.5 (8.8) | 35.7 (9.9) | 50.9 (4.5) | 50.3 (3.9) | 46.4 (4.3) | 44.5 (9.1) | 45.5 (8.7) | 48.4 (9.7) |
4 | 6 | SE | 31.9 (10.2) | 32.3 (9.4) | 32.5 (11.5) | 50.5 (4.2) | 50.4 (3.7) | 49.7 (2.5) | 45.7 (9.0) | 44.7 (8.4) | 47.7 (8.5) |
5 | 6 | W | 35.5 (8.5) | 34.6 (7.7) | 31.9 (9.9) | 48.3 (3.6) | 48.0 (3.0) | 49.2 (2.9) | 45.5 (8.3) | 45.7 (7.4) | 45.4 (8.3) |
6 | 6 | SE | 32.3 (10.0) | 32.3 (9.9) | 31.9 (11.3) | 49.3 (4.4) | 49.7 (3.5) | 53.4 (3.9) | 45.5 (9.3) | 43.8 (9.7) | 50.1 (7.8) |
7 | 6 | E | 37.2 (10.3) | 35.5 (9.7) | 34.2 (10.5) | 47.4 (3.5) | 46.1 (3.8) | 46.1 (3.6) | 46.1 (8.5) | 43.0 (8.9) | 46.8 (8.1) |
8 | 6 | E | 36.9 (9.2) | 35.8 (9.3) | 33.6 (10.1) | 50.0 (4.3) | 49.1 (3.5) | 47.9 (3.2) | 46.5 (8.6) | 45.0 (8.5) | 48.5 (6.7) |
9 | 6 | W | 31.7 (9.2) | 32.6 (8.9) | 31.8 (10) | 44.2 (4.8) | 45.1 (3.7) | 51.6 (5.5) | 39.9 (7.5) | 41.2 (7.0) | 43.6 (7.1) |
10 | 6 | E | 35.6 (8.4) | 35.8 (8.2) | 36.6 (7.4) | 47.3 (4.2) | 46.9 (3.7) | 45.3 (3.2) | 44.7 (8.2) | 44.8 (7.2) | 47.3 (4.3) |
11 | 6 | E | 36.4 (9.6) | 34.6 (9.5) | 32.7 (9.4) | 48.3 (4.5) | 49.1 (3.8) | 49.4 (3.6) | 44.6 (8.7) | 44.5 (8.7) | 49.4 (8.2) |
12 | 6 | W | 37.8 (9.4) | 36.1 (9.9) | 29.9 (8.6) | 52.1 (5.7) | 48.6 (3.9) | 46.8 (3.9) | 45.7 (7.6) | 45.1 (7.0) | 45.8 (5.8) |
13 | 6 | E | 34.7 (9.0) | 35.6 (9.5) | 31.9 (10.9) | 52.9 (5.7) | 51.9 (4.4) | 51.7 (3.8) | 44.6 (8.9) | 44.4 (8.3) | 51.1 (7.7) |
14 | 6 | W | 38.0 (8.6) | 37.4 (8.5) | 32.0 (9.5) | 45.8 (3.7) | 46.1 (3.0) | 42.9 (3.1) | 44.7 (7.5) | 44.6 (7.6) | 48.2 (7.3) |
15 | 10 | NW | 39.1 (10.2) | 40.4 (11.1) | 36.4 (11.7) | 53.0 (6.0) | 54.1 (5.8) | 56.6 (4.4) | 47.8 (10.2) | 47.0 (9.5) | 52.8 (10.5) |
16 | 10 | SE | 36.4 (9.2) | 37.4 (8.7) | 35.7 (9.3) | 49.1 (4.0) | 50.0 (3.8) | 45.4 (3.7) | 44.1 (7.4) | 44.0 (6.7) | 48.2 (8.9) |
17 | 10 | SE | 33.7 (10.3) | 32.6 (10.3) | 35.1 (11.5) | 49.0 (5.3) | 48.0 (4.2) | 48.2 (3.2) | 46.9 (9.0) | 43.7 (8.3) | 48.9 (9.4) |
18 | 10 | E | 34.9 (9.9) | 36.2 (9.8) | 34 (10.7) | 46.3 (4.3) | 44.7 (3.8) | 42.4 (3.5) | 44.3 (8.2) | 42.3 (7.7) | 44.7 (11.4) |
19 | 10 | W | 34.7 (8.8) | 35.0 (9.3) | 33.5 (9.1) | 45.1 (5.3) | 45.5 (3.9) | 39.9 (3.4) | 41.2 (8.9) | 43.2 (8.1) | 45.3 (7.6) |
20 | 10 | W | 31.6 (9.1) | 33.0 (8.6) | 36.2 (9) | 45.0 (4.5) | 46.3 (4.6) | 40.7 (3.2) | 40.5 (7.0) | 42.5 (6.2) | 45.4 (10.2) |
AVG3 | 35.4 (9.3) | 35.2 (9.2) | 33.5 (10) | 48.4 (4.5) | 48.1 (3.8) | 47.0 (3.6) | 44.6 (8.3) | 44.1 (7.8) | 47.4 (8.0) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Oldham, E. Characterizing Variations in the Indoor Temperature and Humidity of Guest Rooms with an Occupancy-Based Climate Control Technology. Energies 2020, 13, 1575. https://doi.org/10.3390/en13071575
Kim H, Oldham E. Characterizing Variations in the Indoor Temperature and Humidity of Guest Rooms with an Occupancy-Based Climate Control Technology. Energies. 2020; 13(7):1575. https://doi.org/10.3390/en13071575
Chicago/Turabian StyleKim, Hyojin, and Emily Oldham. 2020. "Characterizing Variations in the Indoor Temperature and Humidity of Guest Rooms with an Occupancy-Based Climate Control Technology" Energies 13, no. 7: 1575. https://doi.org/10.3390/en13071575
APA StyleKim, H., & Oldham, E. (2020). Characterizing Variations in the Indoor Temperature and Humidity of Guest Rooms with an Occupancy-Based Climate Control Technology. Energies, 13(7), 1575. https://doi.org/10.3390/en13071575