Research on the Combined Control Strategy of Low Temperature Charging and Heating of Lithium-Ion Power Battery Based on Adaptive Fuzzy Control
Abstract
:1. Introduction
2. Study on Control Strategy of Low Temperature Charging
2.1. Mathematical Model of Low Temperature Charging and Heating
2.2. Charging-Heating Combined Control Scheme
2.3. Charging-Heating Combined Control Strategy Based on Adaptive Fuzzy Control
2.3.1. Fuzzification of Input and Output
2.3.2. Fuzzy Control Rules
2.3.3. Defuzzification
3. Simulation and Experiments
3.1. The Influence of Ambient Temperature on Low Temperature Charging
3.2. The Influence of System Power on Low Temperature Charging
3.3. The Effect of Battery Insulation on Low Temperature Charging
3.4. Analysis and Comparison of Experimental Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bresser, D.; Hosoi, K.; Howell, D.; Li, H.; Zeisel, H.; Amine, H.; Passerini, S. Perspectives of automotive battery R&D in China, Germany, Japan, and the USA. J. Power Sources 2018, 382, 176–178. [Google Scholar]
- Ansean, D.; Gonzalez, M.; Garcia, V.M.; Viera, J.C.; Anton, J.C.; Blanco, C. Evaluation of LiFePO4 Batteries for Electric Vehicle Applications. IEEE Trans. Ind. Appl. 2015, 51, 1855–1863. [Google Scholar] [CrossRef]
- Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. Power Sources 2010, 195, 2419–2430. [Google Scholar] [CrossRef]
- Saw, L.H.; Ye, Y.; Tay, A.A. Integration issues of lithium-ion battery into electric vehicles battery pack. Clean. Prod. 2016, 113, 1032–1045. [Google Scholar] [CrossRef]
- Bandhauer, T.M.; Garimella, S.; Fuller, T.F. A Critical Review of Thermal Issues in Lithium-Ion Batteries. J. Electrochem. Soc. 2011, 158, 1–25. [Google Scholar] [CrossRef]
- Alaoui, C. A Novel Thermal Management for Electric and Hybrid Vehicles. IEEE Trans. Veh. Technol. 2005, 54, 468–476. [Google Scholar] [CrossRef]
- Zhu, J.G.; Sun, Z.C.; Wei, X.Z.; Dai, H.F.; Fang, Q.H.; Tang, X. Research Progress on Low-temperature Characteristics and Heating Techniques of Vehicle Lithium-ion Battery. Automot. Eng. 2019, 41, 571–581. [Google Scholar]
- Liu, H.; Hong, W.; Wang, T.; Chen, C.H.; Sun, N. A Heating Device and System for Low Temperature Charging of Automobile Power Battery. Chinese Patent CN 203839477-U, 17 September 2014. [Google Scholar]
- Liu, F.; Wen, F.; Wang, Z.G.; Wen, C.F. A Control System and Method of Low Temperature Charging. Chinese Patent CN 105553012-A, 4 May 2016. [Google Scholar]
- Han, X.B.; Lu, L.G.; Li, J.Q.; Ouyang, M.G. A Low Temperature Charging Method of Battery. Chinese Patent CN 103117421-A, 22 May 2013. [Google Scholar]
- Zhang, G.S.; Ge, S.H.; Xu, T.; Yang, X.G.; Tian, H.; Wang, C.Y. Rapid self-heating and internal temperature sensing of lithium-ion batteries at low temperatures. J. Electrochim. Acta 2016, 218, 149–155. [Google Scholar] [CrossRef]
- Tippmann, S.; Walper, D.; Balboa, L.; Spier, B.; Bessler, W.G. Low-temperature charging of lithium-ion cells part I: Electrochemical modeling and experimental investigation of degradation behavior. J. Power Sources 2014, 252, 305–316. [Google Scholar] [CrossRef]
- Remmlinger, J.; Tippmann, S.; Buchholz, M.; Dietmayer, K. Low-temperature charging of lithium-ion cells Part II: Model reduction and application. J. Power Sources 2014, 254, 268–276. [Google Scholar] [CrossRef]
- Ruan, H.J.; Jiang, J.C.; Sun, B.X.; Wu, N.N.; Shi, W.; Zhang, Y.R. Stepwise Segmented Charging Technique for Lithium-ion Battery to Induce Thermal Management by Low-Temperature Internal Heating. In Proceedings of the IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China, 31 August–3 September 2014. [Google Scholar]
- Zhang, X.Q.; Zou, H.M.; Liu, J.X.; Tian, C.Q.; Zhang, X.L. Numerical analysis on thermal load of battery temperature control for electric vehicles. Refrig. Air-Cond. 2017, 17, 22–26. [Google Scholar]
- Zhu, J.G.; Sun, Z.C.; Wei, X.Z.; Dai, H.F. Experimental investigations of an AC pulse heating method for vehicular high power lithium-ion batteries at subzero temperature. J. Power Sources 2017, 367, 145–157. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, C.Y. Heating strategies for Li-ion batteries operated from subzero temperatures. Electrochim. Acta 2013, 107, 664–674. [Google Scholar] [CrossRef]
- Thomas, K.E.; Newman, J. Thermal Modeling of Porous Insertion Electrodes. J. Electrochem. Soc. 2003, 150, 176–192. [Google Scholar] [CrossRef]
- Min, H.T.; Sun, W.Y.; Li, X.Y.; Guo, D.N.; Yu, Y.B.; Zhu, T.; Zhao, Z.M. Research on the Optimal Charging Strategy for Li-Ion Batteries Based on Multi-Objective Optimization. Energies 2017, 10, 709. [Google Scholar] [CrossRef] [Green Version]
- Mendel, J.M. Fuzzy logic systems for engineering: A tutorial. Proc. IEEE 1995, 83, 345–377. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, U.A.; Sarvar, H.N.; Muhammad, A.K.; Kamran, Z.; Hee, J.K. A Real-Time Simulink Interfaced Fast-Charging Methodology of Lithium-Ion Batteries under Temperature Feedback with Fuzzy Logic Control. Energies 2018, 11, 1122. [Google Scholar] [CrossRef] [Green Version]
Heating Power ΔP | Battery Temperature Error E | |||||||
---|---|---|---|---|---|---|---|---|
NB | NM | NS | O | PS | PM | PB | ||
Chang in battery temperature error Δe | NB | NB | NB | NM | NM | NS | PS | PS |
NM | NB | NB | NM | NM | NS | PS | PS | |
NS | NB | NB | NS | MS | O | PS | PM | |
O | NM | NM | NS | O | PS | PM | PM | |
PS | NM | NS | O | PS | PS | PB | PB | |
PM | NS | O | PS | PM | PM | PB | PB | |
PB | O | O | PS | PM | PM | PB | PB |
Δkf | Battery Temperature Error E | |||||||
---|---|---|---|---|---|---|---|---|
NB | NM | NS | O | PS | PM | PB | ||
Change in battery temperature error Δe | NB | PB | PB | PS | O | NB | PS | PS |
NM | PB | PB | PS | NS | NB | PS | PS | |
NS | PB | PS | O | NS | NS | PS | PS | |
O | PB | PS | O | NB | O | PS | PS | |
PS | PS | O | NS | NS | O | PB | PB | |
PM | PS | O | NB | NS | PS | PB | PB | |
PB | PS | O | NB | O | PS | PB | PB |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, H.; Wang, B.; Sun, W.; Zhang, Z.; Yu, Y.; Zhang, Y. Research on the Combined Control Strategy of Low Temperature Charging and Heating of Lithium-Ion Power Battery Based on Adaptive Fuzzy Control. Energies 2020, 13, 1584. https://doi.org/10.3390/en13071584
Min H, Wang B, Sun W, Zhang Z, Yu Y, Zhang Y. Research on the Combined Control Strategy of Low Temperature Charging and Heating of Lithium-Ion Power Battery Based on Adaptive Fuzzy Control. Energies. 2020; 13(7):1584. https://doi.org/10.3390/en13071584
Chicago/Turabian StyleMin, Haitao, Boshi Wang, Weiyi Sun, Zhaopu Zhang, Yuanbin Yu, and Yanzhou Zhang. 2020. "Research on the Combined Control Strategy of Low Temperature Charging and Heating of Lithium-Ion Power Battery Based on Adaptive Fuzzy Control" Energies 13, no. 7: 1584. https://doi.org/10.3390/en13071584
APA StyleMin, H., Wang, B., Sun, W., Zhang, Z., Yu, Y., & Zhang, Y. (2020). Research on the Combined Control Strategy of Low Temperature Charging and Heating of Lithium-Ion Power Battery Based on Adaptive Fuzzy Control. Energies, 13(7), 1584. https://doi.org/10.3390/en13071584