An Experimental Analysis of Soybean Straw Combustion on Both CO and NOX Emission Characteristics in a Tubular Furnace
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Apparatus and Methods
2.3. Calculation Method
2.3.1. Volatile Material Residence Time in the Tubular Furnace
2.3.2. Volume Reduction Rate
2.3.3. Energy Consumption and Proportion
3. Results and Discussions
3.1. CO Emission
3.2. Volume Reduction Rate
3.3. NOX Emission
3.4. Power Consumption
3.5. Optimum Combustion Temperature
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hossain, A.K.; Badr, O. Prospects of renewable energy utilisation for electricity generation in Bangladesh. Renew. Sustain. Energy Rev. 2007, 11, 1617–1649. [Google Scholar] [CrossRef]
- Lin, A.; Zheng, Q.; Jiang, Y.; Lin, X.; Zhang, H. Sensitivity of air/mist non-equilibrium phase transition cooling to transient characteristics in a compressor of gas turbine. Int. J. Heat Mass Transf. 2019, 137, 882–894. [Google Scholar] [CrossRef]
- Lin, A.; Zhou, J.; Fawzy, H.; Zhang, H.; Zheng, Q. Evaluation of mass injection cooling on flow and heat transfer characteristics for high-temperature inlet air in a MIPCC engine. Int. J. Heat Mass Transf. 2019, 135, 620–630. [Google Scholar] [CrossRef]
- Jiang, X.; Lin, A.; Ma, H.; Li, X.; Li, Y. Minimizing the thermal bridge through the columns in a refrigeration room. Appl. Eng. 2020, 165, 114565. [Google Scholar] [CrossRef]
- Klass, D.L. Chapter 4—Virgin Biomass Production. In Biomass for Renewable Energy, Fuels, and Chemicals; Klass, D.L., Ed.; Academic Press: San Diego, CA, USA, 1998; pp. 91–136. [Google Scholar]
- Du, Z.; Li, Y.; Wang, X.; Wan, Y.; Chen, Q.; Wang, C.; Lin, X.; Liu, Y.; Chen, P.; Ruan, R. Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour. Technol. 2011, 102, 4890–4896. [Google Scholar] [CrossRef]
- Haykiri-Acma, H.; Yaman, S.; Kucukbayrak, S. Effect of heating rate on the pyrolysis yields of rapeseed. Renew. Energy 2006, 31, 803–810. [Google Scholar] [CrossRef]
- Huber, G.W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev. 2006, 106, 4044–4098. [Google Scholar] [CrossRef] [Green Version]
- Gross, R.; Leach, M.; Bauen, A. Progress in renewable energy. Environ. Int. 2003, 29, 105–122. [Google Scholar] [CrossRef]
- Zou, S.; Wu, Y.; Yang, M.; Li, C.; Tong, J. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresour. Technol. 2010, 101, 359–365. [Google Scholar]
- Ren, S.; Lei, H.; Wang, L.; Bu, Q.; Chen, S.; Wu, J.; Julson, J.; Ruan, R. Biofuel production and kinetics analysis for microwave pyrolysis of Douglas fir sawdust pellet. J. Anal. Appl. Pyrolysis 2012, 94, 163–169. [Google Scholar] [CrossRef]
- Sun, Z.; Shen, J.; Jin, B.; Wei, L. Combustion characteristics of cotton stalk in FBC. Biomass Bioenergy 2010, 34, 761–770. [Google Scholar] [CrossRef]
- Tonini, D.; Vadenbo, C.; Astrup, T.F. Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective. Energy 2017, 124, 295–309. [Google Scholar] [CrossRef]
- Wang, T.; Li, Y.; Zhi, D.; Lin, Y.; He, K.; Liu, B.; Mao, H. Assessment of combustion and emission behavior of corn straw biochar briquette fuels under different temperatures. J. Environ. Manag. 2019, 250, 109399. [Google Scholar] [CrossRef]
- Larsen, S.U.; Bruun, S.; Lindedam, J. Straw yield and saccharification potential for ethanol in cereal species and wheat cultivars. Biomass Bioenergy 2012, 45, 239–250. [Google Scholar] [CrossRef]
- Demirbas, A. Combustion of biomass. Energy Sources Part A-Recovery Util. Environ. Eff. 2007, 29, 549–561. [Google Scholar] [CrossRef]
- Demirbas, M.F. Biorefineries for biofuel upgrading: A critical review. Appl. Energy 2009, 86, S151–S161. [Google Scholar] [CrossRef]
- Razmjoo, N.; Sefidari, H.; Strand, M. Measurements of temperature and gas composition within the burning bed of wet woody residues in a 4MW moving grate boiler. Fuel Process. Technol. 2016, 152, 438–445. [Google Scholar] [CrossRef]
- Delfino, R.J. Epidemiologic evidence for asthma and exposure to air toxics: Linkages between occupational, indoor, and community air pollution research. Environ. Health Perspect. 2002, 110, 573–589. [Google Scholar] [CrossRef]
- Yang, B.; Peng, L.; Wang, Y.; Song, J. The characteristics of air pollutants from the combustion o biomass pellets. Energy Sources Part A-Recovery Util. Environ. Eff. 2018, 40, 351–357. [Google Scholar] [CrossRef]
- Peace, H.; Owen, B.; Raper, D.W. Identifying the contribution of different urban highway air pollution sources. Sci. Total Environ. 2004, 334, 347–357. [Google Scholar] [CrossRef]
- Ren, Q.; Zhao, C.; Duan, L.; Chen, X. NO formation during agricultural straw combustion. Bioresour. Technol. 2011, 102, 7211–7217. [Google Scholar] [CrossRef]
- Lai, Z.; Ma, X.; Tang, Y.; Lin, H.; Chen, Y. Thermogravimetric analyses of combustion of lignocellulosic materials in N-2/O-2 and CO2/O-2 atmospheres. Bioresour. Technol. 2012, 107, 444–450. [Google Scholar] [CrossRef]
- Lu, X.; Ji, L.; Ma, J.; Zhou, X.; Huang, Z. Combustion characteristics and influential factors of isooctane active-thermal atmosphere combustion assisted by two-stage reaction of n-heptane. Combust. Flame 2011, 158, 203–216. [Google Scholar] [CrossRef]
- Lv, P.M.; Xiong, Z.H.; Chang, J.; Wu, C.Z.; Chen, Y.; Zhu, J.X. An experimental study on biomass air-steam gasification in a fluidized bed. Bioresour. Technol. 2004, 95, 95–101. [Google Scholar] [CrossRef]
- Jin, Y.; Lu, L.; Ma, X.; Liu, H.; Chi, Y.; Yoshikawa, K. Effects of blending hydrothermally treated municipal solid waste with coal on co-combustion characteristics in a lab-scale fluidized bed reactor. Appl. Energy 2013, 102, 563–570. [Google Scholar] [CrossRef]
- Tang, Y.; Ma, X.; Lai, Z.; Zhou, D.; Chen, Y. Thermogravimetric characteristics and combustion emissions of rubbers and polyvinyl chloride in N-2/O-2 and CO2/O-2 atmospheres. Fuel 2013, 104, 508–514. [Google Scholar] [CrossRef]
- Fang, M.X.; Shen, D.K.; Li, Y.X.; Yu, C.J.; Luo, Z.Y.; Cen, K.F. Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-FTIR analysis. J. Anal. Appl. Pyrolysis 2006, 77, 22–27. [Google Scholar] [CrossRef]
- Betancur, M.; Daniel Martinez, J.; Murillo, R. Production of activated carbon by waste tire thermochemical degradation with CO2. J. Hazard. Mater. 2009, 168, 882–887. [Google Scholar] [CrossRef]
- Liao, Y.; Ma, X. Thermogravimetric analysis of the co-combustion of coal and paper mill sludge. Appl. Energy 2010, 87, 3526–3532. [Google Scholar]
- Sørum, L.; Grønli, M.G.; Hustad, J.E. Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel 2001, 80, 1217–1227. [Google Scholar] [CrossRef]
- Park, K.K. A differential equation for vapor pressure as a function of temperature. Fluid Phase Equilibria 2010, 290, 158–165. [Google Scholar] [CrossRef]
- Youn, I.M.; Park, S.H.; Roh, H.G.; Lee, C.S. Investigation on the fuel spray and emission reduction characteristics for dimethyl ether (DME) fueled multi-cylinder diesel engine with common-rail injection system. Fuel Process. Technol. 2011, 92, 1280–1287. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Q. Emission characteristics of biomass combustion under oxyfuel conditions. Energy Sources Part A-Recovery Util. Environ. Eff. 2018, 40, 688–692. [Google Scholar] [CrossRef]
- Celikten, I. An experimental investigation of the effect of the injection pressure on engine performance and exhaust emission in indirect injection diesel engines. Appl. Therm. Eng. 2003, 23, 2051–2060. [Google Scholar] [CrossRef]
- Werther, J.; Saenger, M.; Hartge, E.U.; Ogada, T.; Siagi, Z. Combustion of agricultural residues. Prog. Energy Combust. Sci. 2000, 26, 1–27. [Google Scholar] [CrossRef]
- Yang, T.; Ji, Q.; Kai, X.; Meng, Y. Release and transformation of potassium during corn straw and coal co-combustion. Energy Sources Part A-Recovery Util. Environ. Eff. 2018, 40, 327–334. [Google Scholar] [CrossRef]
- Al Asfar, J.J.; AlShwawra, A.; Sakhrieh, A.; Hamdan, M.A. Combustion characteristics of solid waste biomass, oil shale, and coal. Energy Sources Part A-Recovery Util. Environ. Eff. 2018, 40, 335–342. [Google Scholar] [CrossRef]
- Biagini, E.; Tognotti, L. Comparison of devolatilization/char oxidation and direct oxidation of solid fuels at low heating rate. Energy Fuels 2006, 20, 986–992. [Google Scholar] [CrossRef]
- Muthuraman, M.; Namioka, T.; Yoshikawa, K. A comparative study on co-combustion performance of municipal solid waste and Indonesian coal with high ash Indian coal: A thermogravimetric analysis. Fuel Process. Technol. 2010, 91, 550–558. [Google Scholar] [CrossRef]
- Lin, A.; Sun, Y.; Zhang, H.; Lin, X.; Yang, L.; Zheng, Q. Fluctuating characteristics of air-mist mixture flow with conjugate wall-film motion in a compressor of gas turbine. Appl. Therm. Eng. 2018, 142, 779–792. [Google Scholar] [CrossRef]
- Jia, X.; Zhang, H.; Zheng, Q. Numerical investigation on the effect of hot running rim seal clearance on hot gas ingestion into rotor-stator system. Appl. Therm. Eng. 2019, 152, 79–91. [Google Scholar] [CrossRef]
- Lin, A.; Zheng, Q.; Fawzy, H.; Luo, M.; Zhou, J.; Zhang, H. Effect of water injection cooling on flow field characteristics in the cooling section of precooled turbine-based combined cycle engine. Int. J. Heat Mass Transf. 2019, 141, 615–626. [Google Scholar] [CrossRef]
- Akhtar, J.; Yaseen, A.; Munir, S. Effect of rice husk co-combustion with coal on gaseous emissions and combustion efficiency. Energy Sources Part A-Recovery Util. Environ. Eff. 2018, 40, 1010–1018. [Google Scholar] [CrossRef]
Elemental Analysis (wt. %) | Proximate Analysis (wt. %) | ||
---|---|---|---|
C | 41.34 | Moisture | 7.98 |
H | 4.23 | Ash | 8.21 |
O | 45.26 | Volatile | 70.03 |
N | 0.85 | Fixed carbon | 13.78 |
S | 0.11 |
Temperature (K) | The Start Time (s) | The Stopped Time (s) | The Average Emission Rate (ppmv/s) |
---|---|---|---|
773 | 8.31 | 475.31 | 548.80 |
873 | 4.31 | 438.31 | 808.95 |
973 | 3.31 | 355.31 | 385.26 |
1073 | 2.31 | 280.31 | 61.83 |
1173 | 1.31 | 254.31 | 7.16 |
Temperature (K) | tr (h) | tn (h) | Pn (kW) | Wr (kWh) | Wn (kWh) | η (%) |
---|---|---|---|---|---|---|
773 | 0.247 | 0.399 | 1.015 | 0.251 | 0.405 | 61.905 |
873 | 0.313 | 0.468 | 1.354 | 0.423 | 0.634 | 66.880 |
973 | 0.378 | 0.476 | 1.692 | 0.640 | 0.806 | 79.412 |
1073 | 0.460 | 0.546 | 2.200 | 1.012 | 1.201 | 84.249 |
1173 | 0.558 | 0.631 | 2.708 | 1.511 | 1.709 | 88.431 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.; Peng, W.; Ling, C. An Experimental Analysis of Soybean Straw Combustion on Both CO and NOX Emission Characteristics in a Tubular Furnace. Energies 2020, 13, 1587. https://doi.org/10.3390/en13071587
Xu Q, Peng W, Ling C. An Experimental Analysis of Soybean Straw Combustion on Both CO and NOX Emission Characteristics in a Tubular Furnace. Energies. 2020; 13(7):1587. https://doi.org/10.3390/en13071587
Chicago/Turabian StyleXu, Qing, Weichao Peng, and Changming Ling. 2020. "An Experimental Analysis of Soybean Straw Combustion on Both CO and NOX Emission Characteristics in a Tubular Furnace" Energies 13, no. 7: 1587. https://doi.org/10.3390/en13071587
APA StyleXu, Q., Peng, W., & Ling, C. (2020). An Experimental Analysis of Soybean Straw Combustion on Both CO and NOX Emission Characteristics in a Tubular Furnace. Energies, 13(7), 1587. https://doi.org/10.3390/en13071587