Numerical Investigation of the Effect of Nanoparticle Diameter and Sphericity on the Thermal Performance of Geothermal Heat Exchanger Using Nanofluid as Heat Transfer Fluid
Abstract
:1. Introduction
2. Numerical Study
2.1. Characterization of Material
2.2. Numerical Model
2.3. Mesh Topology and Numerical Method
2.4. Numerical Method
- The fluid temperature in the whole heat transfer process varied from 22 to 40 °C. The thermophysical properties had only little change (less than 5%). Therefore, the thermophysical properties of materials were set as constant, and the corresponding temperature was the weighted average value by time.
- The sandbox wall, which was considered as the far-field boundary, was set as adiabatic.
- The initial temperature (23.15 °C) of the ground was constant and uniform.
- The thermal resistance of the heat exchanger tube wall was negligible.
- The sand was assumed to be the uniform material with the homogeneous thermal properties.
2.5. Validation of Model
3. Results and Discussion
3.1. Effect of Nanoparticle Diameter
3.2. Effect of Nanoparticle Phericity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
a | interfacial layer thickness at the surface of spherical micro-do-mains (m) |
specific heat(J/kg•K) | |
distance between two particles (m) | |
E | test error (%) |
total interparticle potential (%) | |
g | gravitational acceleration (m/s2) |
k | thermal conductivity (W/m•K) |
Boltzmann’s constant (J/K) | |
n | the empirical shape parameter |
p | pressure (Pa) |
Q | heat transfer rate (W) |
radius (m) | |
T | temperature (K) |
t | time (s) |
U | uncertainty (%) |
u | flow rate (m/s) |
x | x-axis coordinates (m) |
y | y-axis coordinates (m) |
z | z-axis coordinates (m) |
Greek Letter | |
density(kg/m³) | |
heat load-to-pumping power ratio of fluid (%) | |
μ | dynamic viscosity, (N•s/m2) |
the ratio of the nanolayer thickness to the original particle radius (%) | |
empirical parameter (%) | |
empirical parameter | |
empirical parameter | |
the volume fraction of nanoparticle (%) | |
sphericity | |
a parameter characterizing the diffuseness of the interfacial boundary (m) | |
Subscripts | |
cp | complex particle |
bf | base fluid |
f | fluid |
nf | nanofluid |
p | particle |
s | nanoparticle |
References
- Lund, J.W.; Boyd, T.L. Direct utilization of geothermal energy 2015 worldwide review. Geothermics 2016, 60, 66–93. [Google Scholar] [CrossRef]
- Han, C.; Yu, X. Sensitivity analysis of a vertical geothermal heat pump system. Appl. Energy 2016, 170, 148–160. [Google Scholar] [CrossRef] [Green Version]
- Faizal, M.; Bouazza, A.; Rao, M.S. Heat transfer enhancement of geothermal energy piles. Renew. Sustain. Energy Rev. 2016, 57, 16–33. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Tiwari, A.K.; Ghosh, S.K. Application of nanofluids in plate heat exchanger: A review. Energy Convers. Manag. 2015, 105, 1017–1036. [Google Scholar] [CrossRef]
- Wilk, J.; Smusz, R.; Grosicki, S. Thermophysical properties of water based Cu nanofluid used in special type of coil heat exchanger. Appl. Therm. Eng. 2017, 127, 933–943. [Google Scholar] [CrossRef]
- Nasir, F.M.; Mohamad, A.Y. Heat transfer of CuO-water based nanofluids in a compact heat exchanger. ARPN J. Eng. Appl. Sci. 2006, 11, 2517–2523. [Google Scholar]
- Said, Z.; Rahman, S.M.A.; El Haj Assad, M.; Alami, A.H. Heat transfer enhancement and life cycle analysis of a Shell-and-Tube Heat Exchanger using stable CuO/water nanofluid. Sustain. Energy Technol. Assess. 2019, 31, 306–317. [Google Scholar] [CrossRef]
- Karuppasamy, M.; Saravanan, R.; Chandrasekaran, M.; Muthuraman, V. Numerical exploration of heat transfer in a heat exchanger tube with cone shape inserts and Al2O3 and CuO nanofluids. Mater. Today Proc. 2020, 21, 940–947. [Google Scholar] [CrossRef]
- Nageswara Rao, V.; Ravi Sankar, B. Heat transfer and friction factor investigations of CuO nanofluid flow in a double pipe U-bend heat exchanger. Mater. Today Proc. 2019, 18, 207–218. [Google Scholar] [CrossRef]
- Narei, H.; Ghasempour, R.; Noorollahi, Y. The effect of employing nanofluid on reducing the bore length of a vertical ground-source heat pump. Energy Convers. Manag. 2016, 123, 581–591. [Google Scholar] [CrossRef]
- Diglio, G.; Roselli, C.; Sasso, M.; Jawali Channabasappa, U. Borehole heat exchanger with nanofluids as heat carrier. Geothermics 2018, 72, 112–123. [Google Scholar] [CrossRef]
- Sui, D.; Langåker, V.H.; Yu, Z. Investigation of Thermophysical Properties of Nanofluids for Application in Geothermal Energy. Energy Procedia 2017, 105, 5055–5060. [Google Scholar] [CrossRef]
- Bobbo, S.; Colla, L.; Barizza, A.; Rossi, S.; Fedele, L. Characterization of Nanofluids Formed by Fumed Al2O3 in Water for Geothermal Applications West Lafayette. Proceeidngs of the International Refrigeration and Air Conditionging Conference, Indiana, IN, USA, 20 December 2016. [Google Scholar]
- Daneshipour, M.; Rafee, R. Nanofluids as the circuit fluids of the geothermal borehole heat exchangers. Int. Commun. Heat Mass Transf. 2017, 81, 34–41. [Google Scholar] [CrossRef]
- Baran, A.; Mateescu, T.; Luciu, R. Numerical Simulation of a Heat Exchanger Using Al2O3 Nanofluid and STES. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Iasi, Rome, 30–31 May 2019; IOP Publishing: Bristol, UK; p. 012040. [Google Scholar]
- Kapıcıoğlu, A.; Esen, H. Experimental investigation on using Al2O3/ethylene glycol-water nano-fluid in different types of horizontal ground heat exchangers. Appl. Thermal Eng. 2020, 165, 114559. [Google Scholar] [CrossRef]
- Khan, A.I.; Valan Arasu, A. A review of influence of nanoparticle synthesis and geometrical parameters on thermophysical properties and stability of nanofluids. Thermal Sci. Eng. Progress 2019, 11, 334–364. [Google Scholar] [CrossRef]
- Jamshidi, N.; Mosaffa, A. Investigating the effects of geometric parameters on finned conical helical geothermal heat exchanger and its energy extraction capability. Geothermics 2018, 76, 177–189. [Google Scholar] [CrossRef]
- Elias, M.; Miqdad, M.; Mahbubul, I.; Saidur, R.; Kamalisarvestani, M.; Sohel, M.; Hepbasli, A.; Rahim, N.; Amalina, M. Effect of nanoparticle shape on the heat transfer and thermodynamic performance of a shell and tube heat exchanger. Int. Commun. Heat Mass Transf. 2013, 44, 93–99. [Google Scholar] [CrossRef]
- Vanaki, S.M.; Mohammed, H.; Abdollahi, A.; Wahid, M. Effect of nanoparticle shapes on the heat transfer enhancement in a wavy channel with different phase shifts. J. Mol. Liq. 2014, 196, 32–42. [Google Scholar] [CrossRef]
- Mahian, O.; Kianifar, A.; Heris, S.Z.; Wongwises, S. First and second laws analysis of a minichannel-based solar collector using boehmite alumina nanofluids: Effects of nanoparticle shape and tube materials. Int. J. Heat Mass Transf. 2014, 78, 1166–1176. [Google Scholar] [CrossRef]
- Abbasian Arani, A.A.; Amani, J. Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2–water nanofluid. Exp. Thermal Fluid Sci. 2013, 44, 520–533. [Google Scholar] [CrossRef]
- Anoop, K.; Sundararajan, T.; Das, S.K. Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int. J. Heat Mass Transf. 2009, 52, 2189–2195. [Google Scholar] [CrossRef]
- Ji, Y.; Ma, H.; Su, F.; Wang, G. Particle size effect on heat transfer performance in an oscillating heat pipe. Exp. Thermal Fluid Sci. 2011, 35, 724–727. [Google Scholar] [CrossRef]
- Alsarraf, J.; Moradikazerouni, A.; Shahsavar, A.; Afrand, M.; Salehipour, H.; Tran, M.D. Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model. Phys. A Stat. Mech. Appl. 2019, 520, 275–288. [Google Scholar] [CrossRef]
- Al-Rashed, A.A.A.A.; Ranjbarzadeh, R.; Aghakhani, S.; Soltanimehr, M.; Afrand, M.; Nguyen, T.K. Entropy generation of boehmite alumina nanofluid flow through a minichannel heat exchanger considering nanoparticle shape effect. Phys. A Stat. Mech. Appl. 2019, 521, 724–736. [Google Scholar] [CrossRef]
- Bahiraei, M.; Monavari, A.; Moayedi, H. Second law assessment of nanofluid flow in a channel fitted with conical ribs for utilization in solar thermal applications: Effect of nanoparticle shape. Int. J. Heat Mass Transf. 2020, 151, 119387. [Google Scholar] [CrossRef]
- Xuan, Y.; Li, Q. Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 2000, 21, 58–64. [Google Scholar] [CrossRef]
- Khedkar, R.S.; Sonawane, S.S.; Wasewar, K.L. Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids. Int. Commun. Heat Mass Transf. 2012, 39, 665–669. [Google Scholar] [CrossRef]
- Eastman, J.A.; Choi, U.; Li, S.; Thompson, L.; Lee, S. Enhanced thermal conductivity through the development of nanofluids. MRS Online Proc. Libr. Arch. 1996, 457, 3. [Google Scholar] [CrossRef] [Green Version]
- Sezer, N.; Atieh, M.A.; Koç, M. A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids. Powder Technol. 2019, 344, 404–431. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Peng, Y.; Wang, Y.; Tu, J. Experimental and numerical investigations on heat transfer in stratified subsurface materials. Appl. Thermal Eng. 2018, 135, 228–237. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Peng, Y.; Wang, Y.; Tu, J. Experimental and numerical studies on the thermal performance of ground heat exchangers in a layered subsurface with groundwater. Renew. Energy 2020, 147, 620–629. [Google Scholar] [CrossRef]
- Jing, L.; Lam, C. Phase change memory. Sci. China 2011, 54, 1061–1072. [Google Scholar]
- Sidik, N.A.C.; Yazid, M.N.A.W.M.; Samion, S.; Musa, M.N.; Mamat, R. Latest development on computational approaches for nanofluid flow modeling: Navier–Stokes based multiphase models. Int. Commun. Heat Mass Transf. 2016, 74, 114–124. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Choi, S.U.S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton–Crosser model. J. Nanoparticle Res. 2004, 6, 355–361. [Google Scholar] [CrossRef]
- Murshed, S.; Leong, K.; Yang, C. A combined model for the effective thermal conductivity of nanofluids. Appl. Thermal Eng. 2009, 29, 2477–2483. [Google Scholar] [CrossRef]
- Hamilton, R.L.; Crosser, O.K. Thermal Conductivity of Heterogeneous Two-Component Systems. Ind. Eng. Chem. Fundam. 1962, 1, 187–191. [Google Scholar] [CrossRef]
- Ganvir, R.B.; Walke, P.V.; Kriplani, V.M. Heat transfer characteristics in nanofluid—A review. Renew. Sustain. Energy Rev. 2017, 75, 451–460. [Google Scholar] [CrossRef]
- Kleinstreuer, C.; Feng, Y. Experimental and theoretical studies of nanofluid thermal conductivity enhancement: A review. Nanoscale Res. Lett. 2011, 6, 229. [Google Scholar] [CrossRef] [Green Version]
- ISO, I.; OIML, B. Guide to the Expression of Uncertainty in Measurement. Geneva, Switzerland 1995, 122, 16–17. [Google Scholar]
- Das, S.K.; Choi, S.U.S.; Patel, H.E. Heat Transfer in Nanofluids—A Review. Heat Transf. Eng. 2006, 27, 3–19. [Google Scholar] [CrossRef]
- Kong, M.; Alvarado, J.L.; Thies, C.; Morefield, S.; Marsh, C.P. Field evaluation of microencapsulated phase change material slurry in ground source heat pump systems. Energy 2017, 122, 691–700. [Google Scholar] [CrossRef] [Green Version]
- Munyalo, J.M.; Zhang, X. Particle size effect on thermophysical properties of nanofluid and nanofluid based phase change materials: A review. J. Mol. Liq. 2018, 265, 77–87. [Google Scholar] [CrossRef]
- Prasher, R.; Phelan, P.E.; Bhattacharya, P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett. 2006, 6, 1529–1534. [Google Scholar] [CrossRef] [PubMed]
- Kole, M.; Dey, T.K. Role of interfacial layer and clustering on the effective thermal conductivity of CuO–gear oil nanofluids. Exp. Thermal Fluid Sci. 2011, 35, 1490–1495. [Google Scholar] [CrossRef]
Physical Parameters | CuO | Water | Sand | Copper Tube | CuO/Water Nanofluid |
---|---|---|---|---|---|
Density, ρ, (kg/m³) | 6500 | 995 | 1953.39 | 8978 | 0.6343 |
Specific heat, Cp, (J/kg•K) | 540 | 4180 | 1348 | 381 | 4069.81 |
Thermal conductivity, k, (W/m•K) | 33 | 0.621 | 1.13 | 387.6 | 1026 |
Dynamic viscosity, μ, (kg/m•s) | \ | 0.7659 | \ | \ | \ |
Grains size ✕ 10−3 (m) | \ | \ | 75–250 | \ | \ |
Average grains size ✕ 10−3 (m) | \ | \ | 83 | \ | \ |
Porosity | \ | \ | 46% | \ | \ |
Moisture | \ | \ | 10.1% | \ | \ |
Operating Condition | Particle Diameter (nm) | Particle Shape | Fluid |
---|---|---|---|
Case 1 | 23.26 | Sphere | Nanofuid |
Case 2 | \ | \ | Water |
Case 3 | 5 | Sphere | Nanofuid |
Case 4 | 10 | Sphere | Nanofuid |
Case 5 | 20 | Sphere | Nanofuid |
Case 6 | 30 | Sphere | Nanofuid |
Case 7 | 40 | Sphere | Nanofuid |
Case 8 | 50 | Sphere | Nanofuid |
Case 9 | 40 | Sphere | Nanofuid |
Case 10 | 40 | Rod-shaped | Nanofuid |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, R.; Jiang, D.; Wang, Y. Numerical Investigation of the Effect of Nanoparticle Diameter and Sphericity on the Thermal Performance of Geothermal Heat Exchanger Using Nanofluid as Heat Transfer Fluid. Energies 2020, 13, 1653. https://doi.org/10.3390/en13071653
Du R, Jiang D, Wang Y. Numerical Investigation of the Effect of Nanoparticle Diameter and Sphericity on the Thermal Performance of Geothermal Heat Exchanger Using Nanofluid as Heat Transfer Fluid. Energies. 2020; 13(7):1653. https://doi.org/10.3390/en13071653
Chicago/Turabian StyleDu, Ruiqing, Dandan Jiang, and Yong Wang. 2020. "Numerical Investigation of the Effect of Nanoparticle Diameter and Sphericity on the Thermal Performance of Geothermal Heat Exchanger Using Nanofluid as Heat Transfer Fluid" Energies 13, no. 7: 1653. https://doi.org/10.3390/en13071653
APA StyleDu, R., Jiang, D., & Wang, Y. (2020). Numerical Investigation of the Effect of Nanoparticle Diameter and Sphericity on the Thermal Performance of Geothermal Heat Exchanger Using Nanofluid as Heat Transfer Fluid. Energies, 13(7), 1653. https://doi.org/10.3390/en13071653