Neuro-Fuzzy System for Energy Management of Conventional Autonomous Vehicles
Abstract
:1. Introduction
2. Vehicle Dynamics and Road Power Demand
2.1. Environmental Conditions
2.1.1. Model of Road Geometry
Model of Wind
2.2. Model of Air Conditioning
2.3. Drive Cycle
2.4. Model of Vehicle
3. Energy Management System for a Conventional Autonomous Vehicle
3.1. NF System
3.1.1. Background
Structure of Adaptive NF Inference System
Learning Algorithm of the NF System
- The robustness of single training was not enough to guarantee the highest efficiency, training networks by hybrid learning can make the system smarter,
- The performance of the network in supervised learning will decline if the algorithm breaks down. However, in a hybrid learning algorithm, the collapsing of the network can be recovered by one algorithm if another algorithm fails,
- The training performance can be sped up by combining two or more algorithms.
FIS Generation Method
- (a)
- GP algorithm
- (b)
- SC method
3.1.2. The NF System for a CAV
3.2. PID Controller and Throttle Engine System
4. Simulation Results and Discussions
4.1. Simulations
4.2. Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Engine torque (Nm) | A/F | Air to fuel ratio | |
Engine speed (rpm) | Pm | Manifold pressure | |
Slope of the road (degree) | vt | Speed of vehicle at time t (m/s) | |
Air density (kg/m3) | vw | Absolute wind speed (m/s) | |
Mechanical efficiency | Vdisp | Volumetric displacement of the engine (m3) | |
Engine efficiency | AC | Air Conditioning | |
Mass flow rate consumption (kg/s) | AV | Autonomous Vehicle | |
Pac | Air conditioning power (W) | CAV | Conventional Autonomous Vehicle |
cd | Drag coefficient | EMS | Energy Management System |
cr | Road friction coefficient | FIS | Fuzzy Inference System |
CT | Constant torque | HEV | Hybrid Electric Vehicle |
Cross-sectional area (m2) | ICE | Internal Combustion Engine | |
Function of air to fuel ratio | RPD | Road Power Demand (W) | |
gr | Gear ratio of the gear box | NF | Neuro-Fuzzy |
dr | Differential ratio | GP | Grid Partition |
r | Wheel radius (m) | SC | Subtractive Clustering |
References
- Khayyam, H.; Javadi, B.; Jalili, M.; Jazar, R.N. Artificial Intelligence and Internet of Things for Autonomous Vehicles. In Nonlinear Approaches in Engineering Applications; Dai, R., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Marzbani, H.; Khayyam, H.; To, C.N.; Quoc, Đ.V.; Jazar, R.N. Autonomous Vehicles: Autodriver Algorithm and Vehicle Dynamics. IEEE Trans. Veh. Technol. 2019, 68, 3201–3211. [Google Scholar] [CrossRef]
- Miao, H.; Jia, H.; Li, J.; Qiu, T.Z. Autonomous connected electric vehicle (ACEV)-based car-sharingsystem modeling and optimal planning: A unified two-stage multi-objective optimization methodology. Energy 2019, 169, 797–818. [Google Scholar] [CrossRef]
- Jazar, R.N.; Dai, L. Nonlinear Approaches in Engineering Applications: Automotive Applications of Engineering Problems; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Phan, D.; Bab-Hadiashar, A.; Lai, C.Y.; Crawford, B.; Hoseinnezhad, R.; Jazar, R.N.; Khayyam, H. Intelligent energy management system for conventional autonomous vehicles. Energy 2020, 191, 116476. [Google Scholar] [CrossRef]
- Khayyam, H.; Kouzani, A.Z.; Khoshmanesh, K.; Hu, E.J. A rule-based intelligent energy management system for an internal combustion engine vehicle. In Proceedings of the TENCON 2008—2008 IEEE Region 10 Conference, Hyderabad, India, 19–21 November 2008. [Google Scholar]
- Marano, V.; Rizzoni, G.; Tulpule, P.; Gong, Q.; Khayyam, H. Intelligent energy management for plug-in hybrid electric vehicles: The role of ITS infrastructure in vehicle electrification. Oil Gas Sci. Technol. Rev. D’ifp Energ. Nouv. 2012, 67, 575–587. [Google Scholar] [CrossRef] [Green Version]
- Khayyam, H.; Bab-Hadiashar, A. Adaptive intelligent energy management system of plug-in hybrid electric vehicle. Energy 2014, 69, 319–335. [Google Scholar] [CrossRef]
- Khayyam, H.; Kouzani, A.Z.; Hu, E.J. An intelligent energy management model for a parallel hybrid vehicle under combined loads. In Proceedings of the 2008 IEEE International Conference on Vehicular Electronics and Safety, Columbus, OH, USA, 22–24 September 2008. [Google Scholar]
- Koot, M.; Kessels, J.T.; De Jager, B.; Heemels, W.; Van den Bosch, P.; Steinbuch, M. Energy management strategies for vehicular electric power systems. IEEE Trans. Veh. Technol. 2005, 54, 771–782. [Google Scholar] [CrossRef]
- Koot, M.; Kessels, J.; De Jager, B.; Van Den Bosch, P. Fuel reduction potential of energy management for vehicular electric power systems. Int. J. Altern. Propuls. 2006, 1, 112–131. [Google Scholar] [CrossRef]
- Won, J.-S.; Langari, R. Intelligent energy management agent for a parallel hybrid vehicle-part II: Torque distribution, charge sustenance strategies, and performance results. IEEE Trans. Veh. Technol. 2005, 54, 935–953. [Google Scholar] [CrossRef]
- Poursamad, A.; Montazeri, M. Design of genetic-fuzzy control strategy for parallel hybrid electric vehicles. Control Eng. Pract. 2008, 16, 861–873. [Google Scholar] [CrossRef]
- Khayyam, H.; Nahavandi, S.; Davis, S. Adaptive cruise control look-ahead system for energy management of vehicles. Expert Syst. Appl. 2012, 39, 3874–3885. [Google Scholar] [CrossRef]
- Jang, J.-S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. ManCybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Babuška, R.; Verbruggen, H. Neuro-fuzzy methods for nonlinear system identification. Annu. Rev. Control 2003, 27, 73–85. [Google Scholar] [CrossRef]
- Khayyam, H. Stochastic models of road geometry and wind condition for vehicle energy management and control. IEEE Trans. Veh. Technol. 2013, 62, 61–68. [Google Scholar] [CrossRef]
- Lambert, M.; Jones, B. Automotive adsorption air conditioner powered by exhaust heat. Part 1: Conceptual and embodiment design. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2006, 220, 959–972. [Google Scholar] [CrossRef]
- Khayyam, H.; Kouzani, A.Z.; Hu, E.J. Reducing energy consumption of vehicle air conditioning system by an energy management system. In Proceedings of the IEEE Intelligent Vehicles Symposium, Xi’an, China, 3–5 June 2009. [Google Scholar]
- Michael, P.; Anthony, M. Engine Testing Theory and Practice; SAE International: Warrendale, PA, USA, 1999. [Google Scholar]
- Mamdani, E.H.; Assilian, S. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 1975, 7, 1–13. [Google Scholar] [CrossRef]
- Sugeno, M.; Kang, G. Structure identification of fuzzy model. Fuzzy Sets Syst. 1988, 28, 15–33. [Google Scholar] [CrossRef]
- Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. ManCybern. 1985, 116–132. [Google Scholar] [CrossRef]
- Jang, J.-S.R.; Sun, C.-T.; Mizutani, E. Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [Book Review]. IEEE Trans. Autom. Control 1997, 42, 1482–1484. [Google Scholar] [CrossRef]
- Chiu, S.L. Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 1994, 2, 267–278. [Google Scholar] [CrossRef]
- Yager, R.R.; Filev, D.P. Generation of fuzzy rules by mountain clustering. J. Intell. Fuzzy Syst. 1994, 2, 209–219. [Google Scholar] [CrossRef]
- Pedrycz, W. Conditional fuzzy c-means. Pattern Recognit. Lett. 1996, 17, 625–631. [Google Scholar] [CrossRef]
- Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Kuhn, M.; Johnson, K. Feature Engineering and Selection: A Practical Approach for Predictive Models; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Khayyam, H.; Golkarnarenji, G.; Jazar, R.N. Limited data modelling approaches for engineering applications. In Nonlinear Approaches in Engineering Applications; Springer: Cham, Switzerlnad, 2018; pp. 345–379. [Google Scholar]
- Heywood, J.B. Internal Combustion Engine Fundamental; McGraw Hill: New York, NY, USA, 1988. [Google Scholar]
- Cho, D.; Hedrick, J.K. Automotive powertrain modeling for control. J. Dyn. Sys. Meas. Control. 1989, 111, 568–576. [Google Scholar] [CrossRef]
- Khayyam, H.; Kouzani, A.Z.; Hu, E.J.; Nahavandi, S. Coordinated energy management of vehicle air conditioning system. Appl. Therm. Eng. 2011, 31, 750–764. [Google Scholar] [CrossRef]
Description | Symbol | Value |
---|---|---|
Road friction coefficient | 0.015 | |
Gravity acceleration | g | 9.81 (m/s2) |
Vehicle speed | v | Driving cycle (m/s) |
Wind speed | vw | (m/s) |
Mass (vehicle + equivalent rotating parts + passengers) | m | 1280 (kg) |
Drag coefficient (constant) | 0.335 | |
Cross-sectional area | ||
Air density | 1.225 (kg/m3) | |
Slope of the road | ||
Combustion energy | qcomb | 38,017 (kJ/kg) |
Wheel radius | r | 0.285 (m) |
Differential ratio | dr | 3.21:1 |
Gear ratio | gr | 3.46:1 1.75:1 1.1:1 0.86:1 0.71:1 |
Engine speed | (rad/s) | |
Engine torque | (Nm) | |
Specific heat at constant pressure | Croom | 1005.7 (J/kg.K) |
Room temperature | Troom | 19–60 (°C) |
Model (CAV) | Distance | mfuel (L/100 km) | |
---|---|---|---|
Without controller | 16.5 km | 25.35 | 7.2 |
FLS | 16.5 km | 28.39 | 6.71 |
FLS + PSO | 16.5 km | 29.09 | 6.51 |
NF-SC | 16.5 km | 28.44 | 6.69 |
NF-GP | 16.5 km | 29.64 | 6.35 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phan, D.; Bab-Hadiashar, A.; Hoseinnezhad, R.; N. Jazar, R.; Date, A.; Jamali, A.; Pham, D.B.; Khayyam, H. Neuro-Fuzzy System for Energy Management of Conventional Autonomous Vehicles. Energies 2020, 13, 1745. https://doi.org/10.3390/en13071745
Phan D, Bab-Hadiashar A, Hoseinnezhad R, N. Jazar R, Date A, Jamali A, Pham DB, Khayyam H. Neuro-Fuzzy System for Energy Management of Conventional Autonomous Vehicles. Energies. 2020; 13(7):1745. https://doi.org/10.3390/en13071745
Chicago/Turabian StylePhan, Duong, Alireza Bab-Hadiashar, Reza Hoseinnezhad, Reza N. Jazar, Abhijit Date, Ali Jamali, Dinh Ba Pham, and Hamid Khayyam. 2020. "Neuro-Fuzzy System for Energy Management of Conventional Autonomous Vehicles" Energies 13, no. 7: 1745. https://doi.org/10.3390/en13071745
APA StylePhan, D., Bab-Hadiashar, A., Hoseinnezhad, R., N. Jazar, R., Date, A., Jamali, A., Pham, D. B., & Khayyam, H. (2020). Neuro-Fuzzy System for Energy Management of Conventional Autonomous Vehicles. Energies, 13(7), 1745. https://doi.org/10.3390/en13071745