Admixing Chaff with Straw Increased the Residues Collected without Compromising Machinery Efficiencies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Equipment Used: Combines, Tractors, and Balers
2.3. Combi System Description
2.4. Pre-Harvest Biomass Sampling
2.5. Harvesting and Baling: Machines Performance
2.5.1. Time Records
2.5.2. Fuel Consumption
2.6. Post-Harvesting Analysis
2.6.1. Bulk Density
2.6.2. Moisture Content
2.7. Evaluation of Residue Harvest Losses
2.8. Statistical Analysis
3. Results
3.1. Grain and Straw Yields, Biomass Distribution in the Residues, Straw Traits, and Straw Harvesting Efficiency
3.2. Efficiency of Combine Grain Harvesting and the Baling Procedures, and Fuel Consumption
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization. FAOSTAT Data. Available online: http://www.fao.org/faostat/en/#home (accessed on 12 February 2020).
- Scarlat, N.; Dallemand, J.F.; Monforti-Ferrario, F.; Nita, V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environ. Dev. 2015, 15, 3–34. [Google Scholar] [CrossRef]
- EU 2015/1513 ILUC Directive. Off. J. Eur. Union 2015, 20–30.
- European Parliament. Report on a 2030 Framework for Climate and Energy Policies (20132135(INI)); European Parliament: Brussels, Belgium, 2014.
- Stelte, W.; Sanadi, A.R.; Shang, L.; Holm, J.K.; Ahrenfeldt, J.; Henriksen, U.B. Recent developments in biomass pelletization—A review. BioResources 2012, 7, 4451–4490. [Google Scholar]
- McCartney, D.H.; Block, H.C.; Dubeski, P.L.; Ohama, A.J. The composition and availability of straw and chaff from small grain cereals for beef cattle in western Canada. Can. J. Anim. Sci. 2006, 86, 443–455. [Google Scholar] [CrossRef]
- Lafond, G.P.; Stumborg, M.; Lemke, R.; May, W.E.; Holzapfel, C.B.; Campbell, C.A. Quantifying Straw Removal through Baling and Measuring the Long-Term Impact on Soil Quality and Wheat Production. Agron. J. 2009, 101, 529–537. [Google Scholar] [CrossRef]
- Ventrella, D.; Stellacci, A.M.; Castrignanò, A.; Charfeddine, M.; Castellini, M. Effects of crop residue management on winter durum wheat productivity in a long term experiment in Southern Italy. Eur. J. Agron. 2016, 77, 188–198. [Google Scholar] [CrossRef]
- Rush, C.M. Effects of Wheat Chaff and Tillage on Inoculum Density of Pythium ultimum in the Pacific Northwest. Phytopathology 1986, 76, 1330. [Google Scholar] [CrossRef]
- Shirtliffe, S.J.; Entz, M.H. Chaff collection reduces seed dispersal of wild oat (Avena fatua) by a combine harvester. Weed Sci. 2005, 53, 465–470. [Google Scholar] [CrossRef]
- Rasse, D.P.; Rumpel, C.; Dignac, M.-F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 2005, 269, 341–356. [Google Scholar] [CrossRef]
- Santhi, C.; Srinivasan, R.; Arnold, J.G.; Williams, J.R. A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas. Environ. Model. Softw. 2006, 21, 1141–1157. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Alewell, C.; Lugato, E.; Montanarella, L. Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 2015, 48, 38–50. [Google Scholar] [CrossRef]
- Unger, J.S.; Glasner, C. Cost analysis of chaff harvesting concepts in Germany. Agronomy 2019, 9, 579. [Google Scholar] [CrossRef] [Green Version]
- Pari, L.; Alfano, V.; Scarfone, A.; Bergonzoli, S.; Suardi, A.; Lazar, S. Best available technologies to harvest cereal chaff. In Proceedings of the 26th European Biomass Conference and Exhibition (EUBCE), Copenhagen, Denmark, 14–18 May 2018. [Google Scholar]
- Muth, D.J.; Bryden, K.M. An integrated model for assessment of sustainable agricultural residue removal limits for bioenergy systems. Environ. Model. Softw. 2013, 39, 50–69. [Google Scholar] [CrossRef]
- Sahoo, K.; Hawkins, G.L.; Yao, X.A.; Samples, K.; Mani, S. GIS-based biomass assessment and supply logistics system for a sustainable biorefinery: A case study with cotton stalks in the Southeastern US. Appl. Energy 2016, 182, 260–273. [Google Scholar] [CrossRef] [Green Version]
- Suardi, A.; Bergonzoli, S.; Alfano, V.; Scarfone, A.; Pari, L. Economic Distance to Gather Agricultural Residues from the Field to the Integrated Biomass Logistic Centre: A Spanish Case-Study. Energies 2019, 12, 3086. [Google Scholar] [CrossRef] [Green Version]
- Agroinlog Integrated Biomass Logistic Centres for the Agro-Industry. EU Horizon 2020 Research and Innovation Programme—Grant Agreement No 727961. Available online: http://agroinlog-h2020.eu/en/home/ (accessed on 17 January 2020).
- Persson, S.J. Combine Harvester Having Astraw Chopper and Husk Discharger. U.S. Patent 6,656,038, 2 December 2003. [Google Scholar]
- American Society of Agricultural Engineers. ASAE EP496.2 Agricultural Machinery Management. ASAE Stand. 2000, 344–349. [Google Scholar]
- EN 14774-1 Solid Biofuels—Determination of Moisture Content—Oven Dry Method—Part 1: Total Moisture—Reference Method; International Standard Organization: Geneva, Switzerland, 2009; ISBN 5935522004.
- Schabenberger, O. Introducing the Glimmix Procedure for Generalized Linear Mixed Models. SUGI 30 Proc. 2005, 1–20. [Google Scholar]
- Saia, S.; Aissa, E.; Luziatelli, F.; Ruzzi, M.; Colla, G.; Ficca, A.G.; Cardarelli, M.; Rouphael, Y. Growth-promoting bacteria and arbuscular mycorrhizal fungi differentially benefit tomato and corn depending upon the supplied form of phosphorus. Mycorrhiza 2020, 30, 133–147. [Google Scholar] [CrossRef]
- Lantz, M.; Prade, T.; Ahlgren, S.; Björnsson, L. Biogas and Ethanol from Wheat Grain or Straw: Is There a Trade-Off between Climate Impact, Avoidance of iLUC and Production Cost? Energies 2018, 11, 2633. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Lehmann, L.M.; García de Jalón, S.; Ghaley, B.B. Assessment of Productivity and Economic Viability of Combined Food and Energy (CFE) Production System in Denmark. Energies 2019, 12, 166. [Google Scholar] [CrossRef] [Green Version]
- Powlson, D.S.; Riche, A.B.; Coleman, K.; Glendining, M.J.; Whitmore, A.P. Carbon sequestration in European soils through straw incorporation: Limitations and alternatives. Waste Manag. 2008, 28, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Baruah, D.C.; Panesar, B.S. Energy Requirement Model for a Combine Harvester, Part I: Development of Component Models. Biosyst. Eng. 2005, 90, 9–25. [Google Scholar] [CrossRef]
- Veikle, E.E. Modeling the Power Requirements of a Rotary Feeding and Cutting System. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2011. [Google Scholar]
- Burrough, D. Power requirements of combine drives. Agric. Eng. 1954, 35, 15–18. [Google Scholar]
- Boyden, A.; Hill, L.; Leduc, P.; Wassermann, J. Field Tests to Correlate Biomass, Combine Yield and Recoverable Straw; Saskatchewan Agriculture & Food, Agriculture Development Fund; Prairie Agricultural Machinery Institute: Regina, SK, Canada, 2001. [Google Scholar]
- Opoku, G.; Vyn, T.J. Wheat residue management options for no-till corn. Can. J. Plant Sci. 1997, 77, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Campbell, C.A.; Selles, F.; Lafond, G.P.; Zentner, R.P. Adopting zero tillage management: Impact on soil C and N under long-term crop rotations in a thin Black Chernozem. Can. J. Soil Sci. 2001, 81, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Bergonzoli, S.; Suardi, A.; Rezaie, N.; Alfano, V.; Pari, L. An Innovative System for Maize Cob and Wheat Chaff Harvesting: Simultaneous Grain and Residues Collection. Energies 2020, 13, 1265. [Google Scholar] [CrossRef] [Green Version]
- Campbell, C.A.; Lafond, G.P.; Zentner, R.P.; Biederbeck, V.O. Influence of fertilizer and straw baling on soil organic matter in a thin black chernozem in western Canada. Soil Biol. Biochem. 1991, 23, 443–446. [Google Scholar] [CrossRef]
- McClellan, R.C.; Nelson, T.L.; Sporcic, M.A. Measurements of residue to grain and relative amounts of straw, chaff, awns and grain yield of wheat and barley varieties common to eastern Washington. In STEEP—Conservation Concepts and Accomplishments. 1986 STEEP Annu. Rev.; Elliot, L.F., Ed.; Washington State Univ: Pullman, WA, USA, 1987; pp. 617–624. [Google Scholar]
p Values | LSmeans of CM | LSmeans of RN | ||||||
---|---|---|---|---|---|---|---|---|
Variable | CM | RN | CM × RN | SPR | ADM | 1R | 2R | |
Total Biomass (TB) | kg DW ha−1 | 0.709 | 0.110 | 0.677 | 16456 ± 2781 | 16523 ± 2781 | 16262 ± 2781 | 16718 ± 2784 |
Total Grain yield (GY) | kg grain DW ha−1 | 0.043 | 0.572 | 0.520 | 8477 ± 1388 | 7665 ± 1388 | 8207 ± 1388 | 7935 ± 1407 |
Uncut residues (i.e., stubble) | kg uncut straw DW ha−1 | 0.027 | 0.467 | 0.028 | 1617 ± 425 | 1706 ± 425 | 1644 ± 425 | 1679 ± 425 |
Total Chaff (TC) | kg chaff DW ha−1 | 0.058 | 0.685 | 0.453 | 1853 ± 102 | 1676 ± 105 | 1791 ± 105 | 1738 ± 125 |
Baled straw (BS) | [kg Straw DW ha−1] | 0.478 | 0.426 | 0.266 | 3710 ± 1075 | 3829 ± 1076 | 3674 ± 1076 | 3865 ± 1081 |
Total potential harvestable straw (TPHS) | kg DW ha−1 | 0.023 | 0.088 | 0.175 | 6362 ± 973 | 7186 ± 974 | 6377 ± 974 | 7171 ± 993 |
Straw harvest raw efficiency | BS / TPHS | 0.246 | 0.663 | 0.198 | 0.593 ± 0.075 | 0.534 ± 0.076 | 0.580 ± 0.076 | 0.547 ± 0.085 |
Mean Bale Weight | Mean Bale Weight | Bale Density | Mean Length of Straw Pieces | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
d.f. | F | p | d.f. | F | p | d.f. | F | P | d.f. | F | p | |
CM | 10.8 | 1.67 | 0.223 | 10.07 | 0.42 | 0.534 | 9.88 | 0.44 | 0.524 | n.a. | n.a. | n.a. |
RN | 8.57 | 10.34 | 0.011 | 9.60 | 0.64 | 0.443 | 9.19 | 0.68 | 0.432 | 89 | 60.54 | <0.0001 |
CM×RN | 8.25 | 0.02 | 0.896 | 8.29 | 0.01 | 0.919 | 8.24 | 0.01 | 0.920 | n.a. | n.a. | n.a. |
Least Squares Means (LSmeans) | Means (in 2019, only) | |||||||||||
Value | S.E. | N | Value | S.E. | n * | |||||||
2R | 187.9 | 2.3 | 37 | 28.40 | 0.75 | 60 | ||||||
1R | 178.4 | 2.5 | 63 | 37.42 | 0.91 | 60 |
p Values | LSmeans of CM | LSmeans of RN | ||||||
---|---|---|---|---|---|---|---|---|
CM | RN | CM × RN | SPR | ADM | 1R | 2R | ||
Data for the grain harvesting procedures | ||||||||
Theoretical Field Capacity (TFC) | [ha h−1] | 0.69 | 0.17 | 0.41 | 3.68 ± 1.66 | 3.76 ± 1.66 | 3.51 ± 1.66 | 3.92 ± 1.67 |
Effective Field Capacity (EFC) | [ha h−1] | 0.71 | 0.66 | 1.00 | 2.29 ± 0.85 | 2.27 ± 0.85 | 2.26 ± 0.85 | 2.30 ± 0.85 |
Field efficiency (FE) | EFC/TFC | 0.63 | 0.01 | 0.24 | 0.63 ± 0.06 | 0.62 ± 0.06 | 0.66 ± 0.06 | 0.58 ± 0.06 |
Fuel consumpion | [l ha−1] | 0.81 | 0.11 | 0.37 | 11.8 ± 2.0 | 11.8 ± 2.0 | 12.1 ± 2.0 | 11.5 ± 2.1 |
Material Capacity | [t grain h−1] | 0.01 | 0.34 | 0.11 | 19.6 ± 2.5 | 17.1 ± 2.5 | 18.8 ± 2.5 | 17.8 ± 2.5 |
Data for the baling procedures | ||||||||
Mean ball weight | [kg Straw FW per bale] | 0.78 | 0.36 | 0.35 | 210 ± 17 | 211 ± 17 | 208 ± 17 | 212 ± 17 |
Bale density | [kg Straw FW m−3] | 0.75 | 0.34 | 0.33 | 134 ± 17 | 134 ± 17 | 133 ± 17 | 135 ± 17 |
Theoretical Field Capacity (TFC) | [ha h−1] | 0.38 | 0.76 | 0.64 | 3.86 ± 0.17 | 4.06 ± 0.15 | 3.92 ± 0.15 | 3.99 ± 0.17 |
Effective Field Capacity (EFC) | [ha h−1] | 0.70 | 0.49 | 0.49 | 1.98 ± 0.29 | 2.04 ± 0.29 | 1.92 ± 0.29 | 2.10 ± 0.32 |
Field efficiency (FE) | EFC/TFC | 0.81 | 0.48 | 0.61 | 0.52 ± 0.07 | 0.51 ± 0.07 | 0.49 ± 0.07 | 0.54 ± 0.08 |
Material Capacity | [t straw h−1] | 0.18 | 0.12 | 0.65 | 8.82 ± 4.32 | 9.50 ± 4.32 | 8.58 ± 4.32 | 9.74 ± 4.33 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suardi, A.; Saia, S.; Stefanoni, W.; Gunnarsson, C.; Sundberg, M.; Pari, L. Admixing Chaff with Straw Increased the Residues Collected without Compromising Machinery Efficiencies. Energies 2020, 13, 1766. https://doi.org/10.3390/en13071766
Suardi A, Saia S, Stefanoni W, Gunnarsson C, Sundberg M, Pari L. Admixing Chaff with Straw Increased the Residues Collected without Compromising Machinery Efficiencies. Energies. 2020; 13(7):1766. https://doi.org/10.3390/en13071766
Chicago/Turabian StyleSuardi, Alessandro, Sergio Saia, Walter Stefanoni, Carina Gunnarsson, Martin Sundberg, and Luigi Pari. 2020. "Admixing Chaff with Straw Increased the Residues Collected without Compromising Machinery Efficiencies" Energies 13, no. 7: 1766. https://doi.org/10.3390/en13071766
APA StyleSuardi, A., Saia, S., Stefanoni, W., Gunnarsson, C., Sundberg, M., & Pari, L. (2020). Admixing Chaff with Straw Increased the Residues Collected without Compromising Machinery Efficiencies. Energies, 13(7), 1766. https://doi.org/10.3390/en13071766