Integration of Smart Grid Resources into Generation and Transmission Planning Using an Interval-Stochastic Model
Abstract
:1. Introduction
2. Problem Formulation
2.1. New Energy Resource Model Under Uncertainty
EV Charging Load
2.2. Formulation of Integrated Generation and Transmission Expansion Planning with Smart Grid Resources
2.2.1. Wind Power Generation
2.2.2. Benders’ Master Problem
2.2.3. Benders’ Slave Problem
- The nodal power balance equation
- The upper and lower limit constraints for generator output and line flow
- The power flow constraints
- The thermal unit ramp up/down rate limits
- The equality constraint for power flow variables
3. Integrated Generation and Transmission Planning Method Incorporating New Energy Resources under Uncertainties
3.1. Risk-Based Decision-Making Method for Interval Planning Problem with Minimax Regret Criterion
3.2. Interval-Stochastic Programming Method with Entropy Pooling
4. Numerical Results
- (1)
- Basecase scenario—this scenario assumes integration of neither wind nor EVs
- (2)
- Wind integration scenario—in which only wind power generation is integrated
- (3)
- Regulated charging scenario—in which the time-of-use charging price of EV is set to be low in off-peak time and the schedule of EV charging is managed to occur when the system net load (i.e., system load minus wind power) is lowest. In this scenario, charging of a vehicle takes place only when it reaches the home of the user.
- (4)
- Unregulated charging scenario—in which the charging price is uniform, so that the EVs are charging freely just after their trip. In this scenario, charging of a vehicle occurs twice, when it reaches the office and their home.
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Fahimi, B.; Kwasinski, A.; Davoudi, A.; Balog, R.S.; Kiani, M. Charge it!—powering a more electrified planet: Challenges and opportunities. IEEE Power Energy Mag. 2011, 9, 54–64. [Google Scholar] [CrossRef]
- González, I.; Calderón, A.J. Integration of open source hardware Arduino platform in automation systems applied to Smart Grids/Micro-Grids. Sustain. Energy Technol. Assess. 2019, 36, 100557. [Google Scholar] [CrossRef]
- Pasetti, M.; Ferrari, P.; Silva, D.R.C.; Silva, I.; Sisinni, E. On the Use of LoRaWAN for the Monitoring and Control of Distributed Energy Resources in a Smart Campus. Appl. Sci. 2020, 10, 320. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Salgado, C.; Aguila-Leon, J.; Chiñas-Palacios, C.; Hurtado-Perez, E. Low-cost web-based Supervisory Control and Data Acquisition system for a microgrid testbed: A case study in design and implementation for academic and research applications. Heliyon 2019, 5, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.; Park, K.; Lee, J.; Park, Y.; Park, Y.; Lee, S.; Chung, B. Privacy-Preserving Lightweight Authentication Protocol for Demand Response Management in Smart Grid Environment. Appl. Sci. 2020, 10, 1758. [Google Scholar] [CrossRef] [Green Version]
- Talaata, M.; Alsayyarib, A.S.; Alblawic, A.; Hatatad, A.Y. Hybrid-cloud-based data processing for power system monitoring in smart grids. Sustain. Cities Soc. 2020, 55, 102049. [Google Scholar] [CrossRef]
- Talaria, S.; Shafie-khaha, M.; Osórioa, G.J.; Aghaeib, J.; Catalão, J.P.S. Stochastic modelling of renewable energy sources from operators’ point-of-view: A survey. Renew. Sustain. Energy Rev. 2018, 81, 1953–1965. [Google Scholar] [CrossRef]
- North American Electric Reliability Corporation (NERC). Reliability considerations from the integration of smart grid. In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 16–20 January 2012. [Google Scholar]
- Varaiya, P.P.; Wu, F.F.; Bialek, J.W. Smart operation of smart grid: Risk-limiting dispatch. Proc. IEEE 2011, 99, 40–57. [Google Scholar] [CrossRef]
- Filipsson, M. Uncertainty, Variability and Environmental Risk Analysis. Ph.D. Dissertation, Linnaeus University, Kalmar, Sweden, 2011. [Google Scholar]
- Walker, W.; Harremoës, P.; Rotmans, J.; Van der Sluijs, J.; Van Asselt, M.; Jansen, P.; Krauss, M.P.K.V. Defining uncertainty: A conceptual basis for uncertainty management in model-based decision support. Integr. Assess. 2003, 4, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Kamalinia, S.; Shahidehpour, M. Generation expansion planning in wind-thermal power systems. IET Gener. Transm. Distrib. 2010, 4, 940–951. [Google Scholar] [CrossRef]
- Moon, G.H.; Kong, S.B.; Joo, S.K.; Ryu, H.S.; Kim, T.H. Stochastic integrated generation and transmission planning incorporating electric vehicle deployment. J. Electr. Eng. Technol. 2013, 8, 1–10. [Google Scholar] [CrossRef]
- Meucci, A. Fully flexible views: Theory and practice. Risk 2008, 21, 97–102. [Google Scholar]
- Meucci, A.; Ardia, D.; Keel, S. Fully flexible extreme views. J. Risk 2011, 14, 39–49. [Google Scholar] [CrossRef]
- Fan, Y.R.; Huang, G.H. A robust two-step method for solving interval linear programming problems within an environmental management context. J. Environ. Inf. 2012, 19, 1–9. [Google Scholar] [CrossRef]
- Luo, B.; Zhou, D.C. Planning hydroelectric resources with recourse-based multistage interval-stochastic programming. Stoch. Environ. Res. Risk Assess. 2009, 23, 65–73. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Ton, D.; Zhou, Y.; Kim, J.; Vyas, A. Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power. Energy Policy 2011, 39, 4016–4021. [Google Scholar] [CrossRef]
- Cao, J.; Mokhtarian, P.L. The Future Demand for Alternative Fuel Passenger Vehicles: A Diffusion of Innovation Approach; University of California: Oakland, CA, USA, 2004. [Google Scholar]
- Seguro, J.V.; Lambert, T.W. Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. J. Wind Engng. Ind. Aerodyn. 2000, 85, 75–84. [Google Scholar] [CrossRef]
- Davies, S.W.; Diaz-Rainey, I. The patterns of induced diffusion: Evidence from the international diffusion of wind energy. Tech. Forecast. Soc. Chang. 2011, 78, 1227–1241. [Google Scholar] [CrossRef]
- Ioannou, A.; Fuzuli, G.; Brennan, F.; Yudha, S.W.; Angus, A. Multi-stage stochastic optimization framework for power generation system planning integrating hybrid uncertainty modelling. Energy Econ. 2019, 80, 760–776. [Google Scholar] [CrossRef]
- López, J.Á.; Ponnambalam, K.; Quintana, V.H. Generation and transmission expansion under risk using stochastic programming. IEEE Trans. Power Syst. 2007, 22, 1369–1378. [Google Scholar] [CrossRef]
- Chinneck, J.W.; Ramadan, K. Linear programming with interval coefficients. J. Oper. Res. Soc. 2000, 51, 209–220. [Google Scholar] [CrossRef]
- Ho, J.W.; Huang, Y.S. A study on the life of an innovative product using a Bayesian approach. Comp. Ind. Eng. 2011, 60, 666–676. [Google Scholar] [CrossRef]
- Sarin, R.K. An approach for long term forecasting with an application to solar electric energy. Manag. Sci. 1979, 25, 543–554. [Google Scholar] [CrossRef]
- Heitsch, H.; Romisch, W. Scenario tree reduction for multistage stochastic programs. Compu. Manag. Sci. 2009, 6, 117–133. [Google Scholar]
- Korea Power Exchange (KPX). The 6th Basic Plan for Long-Term Electricity Supply and Demand (2010–2024); Ministry of Knowledge Economy (MKE): Gwacheon-si, Korea, 2013. [Google Scholar]
- Statistics Korea: Transport Survey. 2011. Available online: http://kostat.go.kr/portal/english/surveyOutlines/6/3/index.static (accessed on 24 November 2019).
- Electrification Roadmap: Revolutionizing Transportation and Achieving Energy Security. 2009. Available online: http://www.electrificationcoalition.org/ (accessed on 24 November 2019).
- Massiani, J. Modelling and Evaluation of the Diffusion of Electric Vehicles: Existing Models, Results and Proposal for a New Model for Policy in European Countries; Working Papers from SIET; SIET: Prayagraj, India, 2011. [Google Scholar]
- Cory, K.; Couture, T.; Kreycik, C. Feed-in Tariff Policy: Design, Implementation, and RPS Policy Interactions; National Renewable Energy Laboratory: Golden, CO, USA, 2009. [Google Scholar]
- Goldman, C.; Levy, R. An Introduction—Smart Grid 101; Lawrence Berkeley National Lab: Berkeley, CA, USA, 2010. [Google Scholar]
- Alguacil, N.; Motto, A.L.; Conejo, A.J. Transmission expansion planning: A mixed-integer LP approach. IEEE Trans. Power Syst. 2003, 18, 1070–1077. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Wang, J.; Wang, L.; He, Y.; Wang, Z. Robust optimization for transmission expansion planning: Minimax cost vs. minimax regret. IEEE Trans. Power Syst. 2014, 29, 3069–3077. [Google Scholar] [CrossRef]
Fuel Type and Capacity (MW *) | Candidate Sites (Area) | Capacity (MW) | Construction Cost Coefficient (k$/MW) | Incremental Heat Rate (kcal/kWh) |
---|---|---|---|---|
LNG-fired#500 | Metro | 500 | 741 | 1558 |
LNG-fired#700 | South West | 700 | 730 | 1521 |
Coal-fired#500 | South East | 500 | 1145 | 1893 |
Coal-fired#800 | Central | 800 | 1058 | 1985 |
Coal-fired#1000 | Central | 800 | 1058 | 1985 |
Nuclear#1000 | South East | 1000 | 2122 | 2084 |
Nuclear#1400 | South East | 1400 | 1790 | 2217 |
Line type | Capacity (MW) | Reactance (p.u./km) | Construction Cost Coefficient (k$/km) |
---|---|---|---|
Line#1 | 466 | 1.06 × 10−4 | 926 |
Line#2 | 518 | 9.16 × 10−5 | 1057 |
Year | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | |
---|---|---|---|---|---|---|---|---|---|
Volume of electric vehicles (EVs) | Lower | 903,003 | 1,059,057 | 1,195,502 | 1,311,020 | 1,404,234 | 1,504,074 | 1,611,014 | 1,725,557 |
Upper | 2,347,808 | 2,753,548 | 3,108,304 | 3,408,652 | 3,651,007 | 3,910,594 | 4,188,637 | 4,486,449 | |
Cap. of wind (MW) | Lower | 7971 | 9861 | 11,177 | 11,492 | 11,492 | 11,492 | 11,492 | 12,009 |
Upper | 14,803 | 18,313 | 20,757 | 21,342 | 21,342 | 21,342 | 21,342 | 22,302 |
Scenario | Basecase Scenario (w/o SG * Resources) | Wind Integration Scenario | Regulated Charging Price Scenario | Unregulated Charging Price Scenario |
---|---|---|---|---|
Number of Generation Unit Addition by Fuel Y\Type in 2027 | ||||
LNG **-fired#500 | 7 | 8 (▲1) | 6 (▼1) | 9 (▲2) |
LNG-fired#700 | 6 | 8 (▲2) | 6 ( - ) | 6 ( - ) |
Coal-fired#500 | 3 | 3 ( - ) | 3 ( - ) | 4 (▲1) |
Coal-fired#800 | 5 | 3 (▼2) | 6 (▲1) | 7 (▲2) |
Coal-fired#1000 | 2 | 1 (▼1) | 2 ( - ) | 2 ( - ) |
Nuclear#1000 | 4 | 3 (▼1) | 5 (▲1) | 5 (▲1) |
Nuclear#1400 | 7 | 6 (▼1) | 8 (▲1) | 7 ( - ) |
Number of Transmission Line Addition in 2027 | ||||
Transmission line | 32 | 33 (▲1) | 34 (▲2) | 37 (▲5) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, G.-H.; Ko, R.; Joo, S.-K. Integration of Smart Grid Resources into Generation and Transmission Planning Using an Interval-Stochastic Model. Energies 2020, 13, 1843. https://doi.org/10.3390/en13071843
Moon G-H, Ko R, Joo S-K. Integration of Smart Grid Resources into Generation and Transmission Planning Using an Interval-Stochastic Model. Energies. 2020; 13(7):1843. https://doi.org/10.3390/en13071843
Chicago/Turabian StyleMoon, Guk-Hyun, Rakkyung Ko, and Sung-Kwan Joo. 2020. "Integration of Smart Grid Resources into Generation and Transmission Planning Using an Interval-Stochastic Model" Energies 13, no. 7: 1843. https://doi.org/10.3390/en13071843
APA StyleMoon, G. -H., Ko, R., & Joo, S. -K. (2020). Integration of Smart Grid Resources into Generation and Transmission Planning Using an Interval-Stochastic Model. Energies, 13(7), 1843. https://doi.org/10.3390/en13071843