The Challenges of Open-Pit Mining in the Vicinity of the Salt Dome (Bełchatów Lignite Deposit, Poland)
Abstract
:1. Introduction
2. Outline of the Studied Area’s Geology
3. Methods and Conditions of the Stability Analysis
3.1. Methods
3.2. Lignite Extraction Progress in 2011–2018
3.3. AWID Measurement System
- ✓
- SSE–NNW by the 2V0° pad,
- ✓
- W–E by the 3V120° pad,
- ✓
- NNE–SSW by the 4V240° pad,
- ✓
- NNW–SSE by the 5V0°+45° pad,
- ✓
- SSE–NNW by the 6V0°−45° pad.
3.4. Materials, Models, and Parameters
3.5. Factors Analysed in Numerical Modelling
4. The Results of the DSD Stability Analysis
5. Stability Analysis in Comparison to the Mining Progress
5.1. Mining Progress Influence on the Analysed Factors
5.2. General Trends and Observations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- BP Statistical Review of World Energy. 2019. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf (accessed on 15 February 2020).
- The World Energy Outlook. Available online: https://www.iea.org/reports/world-energy-outlook-2019/coal#abstract (accessed on 115 February 2020).
- Arikan, F.; Yoleri, F.; Sezer, S.; Caglan, D.; Biliyul, B. Geotechnical assessments of the stability of slopes at the Cakmakkaya and Damar open pit mines (Turkey): A case study. Environ. Earth Sci. 2010, 61, 741–755. [Google Scholar] [CrossRef]
- Kayabasia, A.; Gokceoglub, C. Coal mining under difficult geological conditions: The Can lignite open pit (Canakkale, Turkey). Eng. Geol. 2012, 135, 66–82. [Google Scholar] [CrossRef]
- Zevgolis, I.E.; Deliveris, A.V.; Koukouzas, N.C. Slope failure incidents and other stability concerns in surface lignite mines in Greece. J. Sustain. Min. 2019, 18, 182–197. [Google Scholar] [CrossRef]
- Ozbay, A.; Cabalar, A.F. FEM and LEM stability analyses of the fatal landslides at Çöllolar open-cast lignite mine in Elbistan, Turkey. Landslides 2015, 12, 155–163. [Google Scholar] [CrossRef]
- Deliveris, A.V.; Zevgolis, I.E.; Koukouzas, N.C. Numerical modelling of slope stability in open pit lignite mines: A comparative study. Bull. Geol. Soc. Greece 2016, 50, 671–680. [Google Scholar] [CrossRef] [Green Version]
- Lim, K.; Li, A.J.; Schmid, A.; Lyamin, A.V. Slope-Stability Assessments Using Finite-Element Limit-Analysis Methods. Int. J. Geomech. 2017, 17, 2–15. [Google Scholar] [CrossRef]
- Vanneschia, C.; Eyrea, M.; Burdab, J.; Žižkab, L.; Francioniac, M.; Coggana, J.S. Investigation of landslide failure mechanisms adjacent to lignite mining operations in North Bohemia (Czech Republic) through a limit equilibrium/finite element modelling approach. Geomorphology 2018, 320, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Tutluoglu, L.; Oge, I.F.; Karpuz, C. Two and three dimensional analysis of a slope failure in a lignite mine. Comput. Geosci. 2011, 37, 232–240. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, B.; Han, Y.; Wang, J.; Yao, B.; Zhang, P. Stability of inner dump slope and analytical solution based on circular failure: Illustrated with a case study. Comput. Geotech. 2020, 117, 103241. [Google Scholar] [CrossRef]
- He, M.C.; Feng, J.L.; Sun, X.M. Stability evaluation and optimal excavated design of rock slope at Antaibao open pit coal mine, China. Int. J. Rock Mech. Min. Sci. 2008, 45, 289–302. [Google Scholar] [CrossRef]
- Pinnaduwa, H.S.; Kulatilake, W.; Shu, B. Prediction of rock mass deformations in three dimensions for a part of an open pit mine and comparison with field deformation monitoring data. Geotech. Geol. Eng. 2015, 33, 1551–1568. [Google Scholar]
- Havaej, M.; Cogan, J.; Stead, D.; Davide, E. A combined remote-numerical modelling approach to the stability analysis of Delabole slate Querry, Cornwal, UK. Rock Mech. Rock Eng. 2016, 49, 1227–1245. [Google Scholar] [CrossRef] [Green Version]
- Cała, M.; Jakóbczyk, J.; Cyran, K. Inclinometer monitoring system for stability analysis: The western slope of the Bełchatów field case study. Studia Geotech. Mech. 2016, 38, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Cała, M.; Jakóbczyk, J.; Cyran, K. Application of geotechnical monitoring tools for deformation analysis in the vicinity of the Dębina salt dome (Bełchatów mine, Poland). Eng. Geol. 2017, 230, 130–141. [Google Scholar] [CrossRef]
- Ciuk, E. Tectonics of the Kleszczow graben and its impact on the origin of brow coal deposit. In Guide of LII Polish Geological Society Conference Bełchatów; Barczyk, W., Ed.; Geological Publication: Warsaw, Poland, 1980; pp. 11–14. (In Polish) [Google Scholar]
- Hałuszczak, A. Tectonic Structures in Overlying Coal Sediments in Western Part of Bełchatów Open Cast. Ph.D. Thesis, University of Wrocław, Wrocław, Poland, 1995. (In Polish). [Google Scholar]
- Gotowała, R.; Hałuszczak, A. The Late Alpine structural development of the Kleszczów Graben (Central Poland) as a result of a reactivation of the pre-existing, regional dislocation. EGS Stephan Mueller Spec. Publ. Ser. 2002, 1, 137–150. [Google Scholar] [CrossRef]
- Szewczyk, E. Tectonics of the vicinity of Dębina salt dome. In Proceedings of the XX Field Session of Tectonic Section Polish Geological Society, Wrocław, Poland, 15–16 October 1999. (In Polish). [Google Scholar]
- Dąbrowska, Z. Zechstein Dębina salt dome as a proof for salt tectonics in the southern part of Łódź syncline. Biul. Państwowego Inst. Geol. 1978, 309, 37–41. (In Polish) [Google Scholar]
- Jagóra, E.; Szwed-Lorenz, J. Changeability analysis of main parameters of Bełchatów brown coal open cast mine in western part of Szczerców field. Natl. Inst. Min. Works Wroc. Univ. Technol. 2005, 113, 87–98. (In Polish) [Google Scholar]
- Mastej, W.; Bartuś, T.; Rydlewski, J. Analysis of lithofacies cyclicity in the Miocene Coal Complex of the Bełchatów lignite deposit, south-central Poland. Geologos 2015, 21, 285–302. [Google Scholar] [CrossRef] [Green Version]
- Widera, M. Changes of the lignite seam architecture—A case study from Polish lignite deposits. Int. J. Coal Geol. 2013, 114, 60–73. [Google Scholar] [CrossRef]
- Hałuszczak, A. Cenozoic dynamics of the Dębina Salt Dome, Kleszczów Graben, inferred from structural features of the Tertiary-Quaternary cover. Ann. Soc. Geol. Pol. 2004, 74, 311–318. [Google Scholar]
- Zuchiewicz, W. Neotectonics of Poland: Recent advances. Folia Quat. 2002, 734, 5–99. [Google Scholar]
- Czarnecki, L.; Felisiak, I. Paleo-landslide block of the Southern Frame Fault and its influence on mining operations in the Second-order Graben at the “Bełchatów” Lignite Mine. In Proceedings of the Session “Natural Hazard in Mining” Bełchatów, 2–4 June 2004; The Mineral and Energy Economy Research Institute of Polish Academy of Sciences: Cracow, Poland, 2004; pp. 125–138. (In Polish). [Google Scholar]
- Krzesińska, A.; Redlińska-Marczyńska, A.; Wilkosz, P.; Żelaniewicz, A. Deformation and hydrational structures in cap rocks of the Dębina Salt Dome, the Kleszczów Graben, central Poland. Przegląd Geol. 2010, 58, 522–530, (In Polish with English abstract). [Google Scholar]
- Hochman, A.; Kołodziejczyk, K.; Kula, A.; Musielak, W.; Ożóg, J. Bełchatów Brown Coal Mine. 25th Anniversary. From Public Sector Enterprise to Joint Stock Company; Tekst Publishing House: Bydgoszcz, Poland, 2000; Volume 304. [Google Scholar]
- Widera, M. Characteristics and origin of deformation structures within lignite seams—A case study from Polish opencast mines. Geol. Q. 2016, 60, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek, K.; Klaar, K. Methods and Results of the Investigation of the Thermomechanical Behaviour of Rock Salt with Regard to the Final Disposal of High-Level Radioactive Wastes; Report 10/93; ENRESA: Madrid, Spain, 1993. [Google Scholar]
- Glötzl, R.; Kappei, G.; Kolditz, H.; Meyer, T.; Schmidt, M.W. New Approach to the Long-Therm Determination of the Stress Fields to Rreduce Risks of Large Underground Caverns; Report S2; GLÖTZL Gesellschaft für Baumesstechnik mbH: Rheinstetten, Germany, 1984. [Google Scholar]
- Kessels, W. Operational Principle, Testing, and Applications of the AWID-Flat Jack for Absolute Stress Determinations Using Voltage Measurements. Rock Mech. Rock Eng. 1986, 19, 165–183. [Google Scholar] [CrossRef]
- Flisiak, D.; Klisowski, R. Preliminary assessment of geomechanical properties of salt from Dębina dome. In Geotechnics and Civil Engineering 2004: XXVII Winter School of Rock Mechanics: Zakopane; Flisiak, D., Ed.; Wydawnictwo KGBiG AGH: Kraków, Poland, 2004; pp. 63–72. [Google Scholar]
- Flisiak, D. Laboratory testing of geomechanical properties for selected Permian rock salt deposits. Miner. Resour. Manag. 2008, 24, 121–140. [Google Scholar]
- Davison, I.; Alsop, G.I.; Evansc, N.G.; Safaricza, M. Overburden deformation patterns and mechanisms of salt diaper penetration in the Central Graben, North Sea. Mar. Pet. Geol. 2000, 17, 601–618. [Google Scholar] [CrossRef]
- Harding, R.; Huuse, M. Salt on the move: Multi stage evolution of salt diapirs in the Netherlands North Sea. Mar. Pet. Geol. 2015, 61, 39–55. [Google Scholar] [CrossRef]
- Huang, Z. Multidisciplinary Investigation of Surface Deformation above Salt Domes in Houston, Texas. Ph.D. Thesis, Faculty of the Department of Earth and Atmospheric Sciences, University of Houston USA, Houston, TX, USA, 2012. [Google Scholar]
- Zuchiewicz, W.; Badura, J.; Jarosiński, M. Neotectonics of Poland: An overview of active faulting. Studia Quat. 2007, 24, 5–20. [Google Scholar]
- Looff, K.M.; Looff, K.M.; Rautman, C.A. Salt Spines, Boundary Shear Zones and Anomalous Salts: Their Characteristics, Detection and Influence on Salt Dome Storage Caverns. In Proceedings of the SMRI Spring Technical Conference, Grand Junction, CO, USA, 26–27 April 2010; p. 23. [Google Scholar]
- Looff, K.M. The Impact of Anomalous Salt and Boundary Shear Zones on Salt Cavern Geometry, Cavern Operations, and Cavern Integrity. In Proceedings of the American Gas Association Operations Conference, Orlando, FL, USA, 2–5 May 2017. [Google Scholar]
- JRC Science for Policy Report. Available online: https://ec.europa.eu/jrc/en/publication/mapping-role-raw-materials-sustainable-development-goals (accessed on 5 March 2020).
Rock Types | Unit Weight γ [kN/m3] | Cohesion c [MPa] | Friction Angle φ [0] | Uniaxial Compressive Strength σc [MPa] | Tensile Strength σt [MPa] | Young’s Modulus E [GPa] | Poisson’s Ratio ν [-] |
---|---|---|---|---|---|---|---|
Zechstein rock salt | 2220 | 5.080 | 46.08 | 25.820 | 2.056 | 4.482 | 0.27 |
Gypsum–anhydrite–clay cap | 2202 | 0.161 | 24.00 | 12.800 | 0.176 | 8.050 | 0.40 |
Brecciated Mesozoic rocks over the DSD | 2243 | 0.129 | 30.20 | 3.500 | 0.104 | 1.113 | 0.40 |
Brecciated Mesozoic rocks surrounding the DSD | 2243 | 0.129 | 30.20 | 3.500 | 0.104 | 1.113 | 0.40 |
Triassic formation | 1998 | 0.021 | 25.50 | 0.300 | 0.19 | 0.097 | 0.27 |
Jurassic formation | 2700 | 2.000 | 43.50 | 44.200 | 1.006 | 12.000 | 0.40 |
Cretaceous formation | 2345 | 0.616 | 43.50 | 44.20 | 0.320 | 12.000 | 0.40 |
Miocene undercoal formation | 2059 | 0.500 | 22.00 | 0.500 | 0.250 | 0.110 | 0.40 |
Miocene coal and clay–coal formation | 1590 | 0.149 | 16.50 | 3.400 | 0.219 | 0.162 | 0.32 |
Tertiary clay–sand complex | 1998 | 0.070 | 25.50 | 0.300 | 0.019 | 0.097 | 0.27 |
Quaternary formation | 1998 | 0.070 | 25.50 | 0.300 | 0.019 | 0.097 | 0.27 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cała, M.; Cyran, K.; Jakóbczyk, J.; Kowalski, M. The Challenges of Open-Pit Mining in the Vicinity of the Salt Dome (Bełchatów Lignite Deposit, Poland). Energies 2020, 13, 1913. https://doi.org/10.3390/en13081913
Cała M, Cyran K, Jakóbczyk J, Kowalski M. The Challenges of Open-Pit Mining in the Vicinity of the Salt Dome (Bełchatów Lignite Deposit, Poland). Energies. 2020; 13(8):1913. https://doi.org/10.3390/en13081913
Chicago/Turabian StyleCała, Marek, Katarzyna Cyran, Joanna Jakóbczyk, and Michał Kowalski. 2020. "The Challenges of Open-Pit Mining in the Vicinity of the Salt Dome (Bełchatów Lignite Deposit, Poland)" Energies 13, no. 8: 1913. https://doi.org/10.3390/en13081913
APA StyleCała, M., Cyran, K., Jakóbczyk, J., & Kowalski, M. (2020). The Challenges of Open-Pit Mining in the Vicinity of the Salt Dome (Bełchatów Lignite Deposit, Poland). Energies, 13(8), 1913. https://doi.org/10.3390/en13081913