Experimental Assessment of Flow, Performance, and Loads for Tidal Turbines in a Closely-Spaced Array
Abstract
:1. Introduction
1.1. Previous Studies of Tidal Stream Turbine Arrays
1.2. Other Studies Using the Supergen UKCMER Tidal Turbines
2. Experimental Set-Up and Methods
2.1. The FloWave Ocean Energy Research Facility
2.2. Turbines and Instrumentation
2.3. Array Configurations
2.4. Flow Measurements
3. Influence of Turbine Arrays on Flow Conditions
3.1. Spatial Analysis of Flow Variation
3.2. Frequency Domain Analysis of Spatial Flow Variation
4. Influence of Turbine Array on Loading and Power
4.1. Time-Domain Turbine Response
4.2. Frequency-Domain Turbine Response
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Array Configuration |
ADV | Acoustic Doppler Velocimeter/Velocimetry |
FFT | Fast Fourier Transform |
RBM | Root Bending Moment |
TSR | Tip-Speed Ratio |
References
- SIMEC Atlantis Energy. The MeyGen Tidal Scheme Project. Available online: https://simecatlantis.com/projects/meygen/ (accessed on 15 April 2019).
- Nova Innovation. Bluemull Sound, Shetland. Available online: https://www.novainnovation.com/bluemull-sound (accessed on 4 February 2019).
- Vennell, R.; Funke, S.W.; Draper, S.; Stevens, C.; Divett, T. Designing large arrays of tidal turbines: A synthesis and review. Renew. Sustain. Energy Rev. 2015, 41, 454–472. [Google Scholar] [CrossRef]
- Myers, L.; Bahaj, A. An experimental investigation simulating flow effects in first generation marine current energy converter arrays. Renew. Energy 2012, 37, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Draper, S.; Stallard, T.J.; Stansby, P.K.; Way, S.; Adcock, T.A.A. Laboratory scale experiments and preliminary modelling to investigate basin scale tidal stream energy extraction. In Proceedings of the 10th European Wave and Tidal Energy Conference (EWTEC2013), Aalborg, Denmark, 2–5 September 2013. [Google Scholar]
- Cooke, S.C.; Willden, R.H.J.; Byrne, B.W.; Stallard, T.; Olczak, A. Experimental Investigation of Thrust and Power on a Partial Fence Array of Tidal Turbines. In Proceedings of the 11th European Wave and Tidal Energy Conference, Nantes, France, 6–11 September 2015; pp. 1–10. [Google Scholar]
- Stallard, T.; Collings, R.; Feng, T.; Whelan, J. Interactions between tidal turbine wakes: Experimental study of a group of three-bladed rotors. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 2013, 371, 20120159. [Google Scholar] [CrossRef]
- Dhomé, D.; Piriou, L.; Cazenave, T. Array Configuration Testing—SABELLA; Technical Report; Marine Renewables Infrastructure Network (MARINET): Brussels, Belgium, 2015. [Google Scholar]
- Ordonez-Sanchez, S.; Sutherland, D.; Payne, G.S.; Bruce, T.; Gebreslassie, M.; Belmont, M.R.; Moon, I. Experimental evaluation of the wake characteristics of cross flow turbine arrays. Ocean Eng. 2017, 141, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, D.; Ordonez-Sanchez, S.; Belmont, M.R.; Moon, I.; Steynor, J.; Davey, T.A.D.; Bruce, T. Experimental optimisation of power for large arrays of cross-flow tidal turbines. Renew. Energy 2018, 116, 685–696. [Google Scholar] [CrossRef] [Green Version]
- Mycek, P.; Gaurier, B.; Germain, G.; Pinon, G.; Rivoalen, E. Numerical and experimental study of the interaction between two marine current turbines. Int. J. Mar. Energy 2013, 1, 70–83. [Google Scholar] [CrossRef] [Green Version]
- Mycek, P.; Gaurier, B.; Germain, G.; Pinon, G.; Rivoalen, E. Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part II: Two interacting turbines. Renew. Energy 2014, 68, 876–892. [Google Scholar] [CrossRef] [Green Version]
- Gaurier, B.; Carlier, C.; Germain, G.; Pinon, G.; Rivoalen, E. Three tidal turbines in interaction: An experimental study of turbulence intensity effects on wakes and turbine performance. Renew. Energy 2019, 148, 1150–1164. [Google Scholar] [CrossRef]
- McNaughton, J.; Cao, B.; Vogel, C.R.; Willden, R.H.J. Model scale testing of multi-rotor arrays designed to exploit constructive interference effects. In Proceedings of the 13th European Wave and Tidal Energy Conference, Napoli, Italy, 1–6 September 2019; pp. 1–8. [Google Scholar]
- Whelan, J.I.; Graham, J.M.; Peiró, J. A free-surface and blockage correction for tidal turbines. J. Fluid Mech. 2009, 624, 281–291. [Google Scholar] [CrossRef]
- Payne, G.S.; Stallard, T.; Martinez, R.; Bruce, T. Variation of loads on a three-bladed horizontal axis tidal turbine with frequency and blade position. J. Fluids Struct. 2018, 83, 156–170. [Google Scholar] [CrossRef]
- Payne, G.S.; Stallard, T.; Martinez, R. Design and manufacture of a bed supported tidal turbine model for blade and shaft load measurement in turbulent flow and waves. Renew. Energy 2017, 107, 312–326. [Google Scholar] [CrossRef]
- Martinez, R.; Payne, G.; Bruce, T. Preliminary results on the effects of oblique current and waves on the loadings and performance of tidal turbines. In Proceedings of the 12th European Wave and Tidal Energy Conference (EWTEC2017), Cork, Ireland, 27 August–1 September 2017. [Google Scholar]
- Draycott, S.; Payne, G.; Steynor, J.; Nambiar, A.; Sellar, B.; Venugopal, V. An experimental investigation into non-linear wave loading on horizontal axis tidal turbines. J. Fluids Struct. 2019, 84, 199–217. [Google Scholar] [CrossRef]
- Draycott, S.; Nambiar, A.; Sellar, B.; Davey, T.; Venugopal, V. Assessing extreme loads on a tidal turbine using focused wave groups in energetic currents. Renew. Energy 2019, 135, 1013–1024. [Google Scholar] [CrossRef] [Green Version]
- Draycott, S.; Steynor, J.; Nambiar, A.; Sellar, B.; Venugopal, V. Experimental assessment of tidal turbine loading from irregular waves over a tidal cycle. J. Ocean Eng. Mar. Energy 2019, 5, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Ingram, D.M.; Wallace, A.R.; Robinson, A.; Bryden, I.G. The design and commissioning of the first, circular, combined current and wave test basin. In Proceedings of the Oceans 2014 MTS/IEEE, Taipei, Taiwan, 7–10 April 2014. [Google Scholar]
- Robinson, A.; Ingram, D.M.; Bryden, I.G.; Bruce, T. The generation of 3D flows in a combined current and wave tank. Ocean Eng. 2015, 93, 1–10. [Google Scholar] [CrossRef]
- Robinson, A.; Ingram, D.M.; Bryden, I.G.; Bruce, T. The effect of inlet design on the flow within a combined waves and current flumes, test tank and basins. Coast. Eng. 2015, 95, 117–129. [Google Scholar] [CrossRef]
- Noble, D.R.; Davey, T.A.D.; Smith, H.C.M.; Kaklis, P.; Robinson, A.; Bruce, T. Spatial variation in currents generated in the FloWave Ocean Energy Research Facility. In Proceedings of the 11th European Wave and Tidal Energy Conference (EWTEC2015), Nantes, France, 6–11 September 2015. [Google Scholar]
- Sutherland, D.R.; Noble, D.R.; Steynor, J.; Davey, T.A.D.; Bruce, T. Characterisation of current and turbulence in the FloWave Ocean Energy Research Facility. Ocean Eng. 2017, 139, 103–115. [Google Scholar] [CrossRef]
- Parkinson, S.G.; Collier, W.J. Model validation of hydrodynamic loads and performance of a full-scale tidal turbine using Tidal Bladed. Int. J. Mar. Energy 2016, 16, 279–297. [Google Scholar] [CrossRef]
- ABB Motion Control. User’s Manual MotiFlex e180 Servo Drive; Technical Report; ABB: Zürich, Switzerland, 2016. [Google Scholar]
- Pacific Northwest National Laboratory. MeyGen Tidal Energy Project—Phase I. Available online: https://tethys.pnnl.gov/annex-iv-sites/meygen-tidal-energy-project-phase-i (accessed on 20 May 2019).
- SIMEC Atlantis Energy. AR1500 Tidal Turbine. Available online: https://www.atlantisresourcesltd.com/wp/wp-content/uploads/2016/08/AR1500-Brochure-Final-1.pdf (accessed on 20 May 2019).
- Nortek. Vectrino Profiler Technical Specification; Nortek: Providence, RI, USA, 2013. [Google Scholar]
- Mori, T.; Naganuma, K.; Kimoto, R.; Yakushiji, R.; Nagaya, S. Hydrodynamic and hydroacoustic characteristics of the Flow Noise Simulator. In Proceedings of the 5th ASME-JSME Joint Fluids Engineering Conference, San Diego, CA, USA, 30 July–2 August 2007; pp. 121–127. [Google Scholar] [CrossRef]
- Goring, D.G.; Nikora, V.I. Despiking Acoustic Doppler Velocimeter Data. J. Hydraul. Eng. 2002, 128, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Malki, R.; Masters, I.; Williams, A.J.; Nick Croft, T. Planning tidal stream turbine array layouts using a coupled blade element momentum—Computational fluid dynamics model. Renew. Energy 2014, 63, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Noble, D.R.; Draycott, S.; Nambiar, A.; Sellar, B.; Steynor, J.; Lennon, M.; Davey, T.; Kiprakis, A. Flow Data Around Three Supergen UKCMER Tidal Turbines in a Closely Spaced Staggered Array at FloWave; Edinburgh DataShare: Edinburgh, UK, 2020. [Google Scholar]
- Noble, D.R.; Draycott, S.; Nambiar, A.; Sellar, B.; Steynor, J.; Lennon, M.; Davey, T.; Kiprakis, A. Turbine Loading and Performance Data for Three Supergen UKCMER Tidal Turbines in a Closely Spaced Staggered Array at FloWave; Edinburgh DataShare: Edinburgh, UK, 2020. [Google Scholar]
Rotor diameter (mm) | 1200 | () | |
---|---|---|---|
Nacelle length (mm) | 1030 | ||
Nacelle diameter (mm) | hub to tower | 120 | |
beyond tower | 160 | ||
Hub height (mm) | 1000 | () | |
Tower diameter (mm) | 102 | ||
Distance from rotor plane to tower axis (mm) | 486 | () |
Instrumentation | Variables Measured | Sample Rate [Hz] |
---|---|---|
Vectrino Profiler ADV | Velocity components, U, V, W. | 100 |
Bespoke TST Instrumentation | Torque, T, | 256 |
Thrust, Q, | ||
Streamwise root bending moment, , | ||
Rotational position, . |
Measured Model Scale (0.8 m/s) | Full Scale Equivalent (3.1 m/s) | |||||||
---|---|---|---|---|---|---|---|---|
Array Config. | Front Turbines rpm | Primary Turbine rpm | Thrust [N] | Power [W] | Blade RBM [Nm] | Thrust [kN] | Power [MW] | Blade RBM [MNm] |
AC1 | — | 58 | 225.5 | 125.0 | 25.72 | 761.1 | 1.635 | 1.302 |
AC1 | — | 70 | 244.9 | 127.7 | 27.98 | 826.6 | 1.670 | 1.417 |
AC1 | — | 90 | 263.8 | 124.4 | 30.25 | 890.3 | 1.626 | 1.531 |
AC1 | — | 104 | 267.5 | 114.0 | 30.86 | 902.9 | 1.490 | 1.562 |
AC3 | 58 | 90 | 274.9 | 129.4 | 31.27 | 927.9 | 1.691 | 1.583 |
AC3 | 70 | 90 | 271.4 | 130.6 | 31.47 | 916.1 | 1.707 | 1.593 |
AC3 | 90 | 58 | 234.0 | 129.3 | 26.32 | 789.9 | 1.690 | 1.333 |
AC3 | 90 | 70 | 258.6 | 136.2 | 29.27 | 872.7 | 1.780 | 1.482 |
AC3 | 90 | 90 | 279.9 | 134.6 | 31.96 | 944.7 | 1.759 | 1.618 |
AC3 | 90 | 104 | 290.2 | 129.1 | 33.35 | 979.5 | 1.688 | 1.688 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noble, D.R.; Draycott, S.; Nambiar, A.; Sellar, B.G.; Steynor, J.; Kiprakis, A. Experimental Assessment of Flow, Performance, and Loads for Tidal Turbines in a Closely-Spaced Array. Energies 2020, 13, 1977. https://doi.org/10.3390/en13081977
Noble DR, Draycott S, Nambiar A, Sellar BG, Steynor J, Kiprakis A. Experimental Assessment of Flow, Performance, and Loads for Tidal Turbines in a Closely-Spaced Array. Energies. 2020; 13(8):1977. https://doi.org/10.3390/en13081977
Chicago/Turabian StyleNoble, Donald R., Samuel Draycott, Anup Nambiar, Brian G. Sellar, Jeffrey Steynor, and Aristides Kiprakis. 2020. "Experimental Assessment of Flow, Performance, and Loads for Tidal Turbines in a Closely-Spaced Array" Energies 13, no. 8: 1977. https://doi.org/10.3390/en13081977
APA StyleNoble, D. R., Draycott, S., Nambiar, A., Sellar, B. G., Steynor, J., & Kiprakis, A. (2020). Experimental Assessment of Flow, Performance, and Loads for Tidal Turbines in a Closely-Spaced Array. Energies, 13(8), 1977. https://doi.org/10.3390/en13081977