Analysis and Mitigation on Switching Transients of Medium-Voltage Low-Harmonic Filter Banks
Abstract
:1. Introduction
2. Switching of Filter Banks
2.1. Energization of Single Filter Bank
2.2. Energization of Back-To-Back Filter Bank
2.3. De-Energization of Back-To-Back Filter Bank
3. Case Study and Results
3.1. Results of Case 1
3.2. Results of Case 2
3.3. Results of Case 3: Proposed Method for Reduction Transient Recovery Voltage
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dolara, A.; Leva, S. Power Quality and Harmonic Analysis of End User Devices. Energies 2012, 5, 5453–5466. [Google Scholar] [CrossRef]
- Phannil, N.; Jettanasen, C.; Ngaopitakkul, A. Harmonics and Reduction of Energy Consumption in Lighting Systems by Using LED Lamps. Energies 2018, 11, 3169. [Google Scholar] [CrossRef] [Green Version]
- Nassif, A.B.; Xu, W.; Freitas, W. An Investigation on the Selection of Filter Topologies for Passive Filter Applications. IEEE Trans. Power Deliv. 2009, 24, 1710–1718. [Google Scholar] [CrossRef]
- Beres, R.N.; Wang, X.; Blaabjerg, F.; Liserre, M.; Bak, C.L. Optimal Design of High-Order Passive-Damped Filtersfor Grid-Connected Applications. IEEE Trans. Power Electron. 2016, 31, 2083–2098. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Wang, Y.; Xu, W.; Sitther, E. Characteristic Parameter-Based Detuned C-Type Filter Design. IEEE Power Energy Technol. Syst. J. 2018, 5, 65–72. [Google Scholar] [CrossRef]
- Cano-Plata, E.A.; Ustariz-Farfan, A.J.; Soto-Marin, O.J. Electric Arc Furnace Model in Distribution Systems. IEEE Trans. Ind. Appl. 2015, 51, 4313–4320. [Google Scholar] [CrossRef]
- Acha, E.; Semlyen, A.; Rajakovic, N. A harmonic domain computational package for nonlinear problems and its application to electric arcs. IEEE Trans. Power Deliv. 1990, 5, 1390–1397. [Google Scholar] [CrossRef]
- Alonso, M.A.P.; Donsion, M.P. An improved time domain arc furnace model for harmonic analysis. IEEE Trans. Power Deliv. 2004, 19, 367–373. [Google Scholar] [CrossRef]
- Salgado-Herrera, N.M.; Campos-Gaona, D.; Anaya-Lara, O.; Robles, M.; Rodríguez-Hernández, O.; Rodríguez-Rodríguez, J.R. THD Reductionin Distributed Renewables Energy Accessthrough Wind Energy Conversion System Integration under Wind Speed Conditionsin Tamaulipas, Mexico. Energies 2019, 12, 3550. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Shao, Z.; Chen, F. Data-Driven Compartmental Modeling Methodfor Harmonic Analysis—A Study of the Electric Arc Furnace. Energies 2019, 12, 4378. [Google Scholar] [CrossRef] [Green Version]
- Mendis, S.R.; Gonzalez, D.A. Harmonic and transient overvoltage analyses in arc furnace power systems. IEEE Trans. Ind. Appl. 1992, 28, 336–342. [Google Scholar] [CrossRef]
- Smith, L.M. A practical approach in substation capacitor bank applications to calculating, limiting, and reducing the effects of transient currents. IEEE Trans. Ind. Appl. 1995, 31, 721–724. [Google Scholar] [CrossRef]
- Padimiti, D.S.; Christian, M.B.; Jarvinen, J. Effective Transient-Free Capacitor Switching (TFCS) for Large Motor Starting on MV Systems. IEEE Trans. Ind. Appl. 2019, 55, 1012–1020. [Google Scholar] [CrossRef]
- Mysore, P.G.; Mork, B.A.; Bahirat, H.J. Improved Application of Surge Capacitors for TRV Reduction When Clearing Capacitor Bank Faults. IEEE Trans. Power Deliv. 2010, 25, 2489–2495. [Google Scholar] [CrossRef]
- Ghanbari, T.; Farjah, E.; Zandnia, A. Solid-state transient limiter for capacitor bank switching transients. IET Gener. Transm. Distrib. 2013, 7, 1272–1277. [Google Scholar] [CrossRef]
- Badrzadeh, B. Transient Recovery Voltages Caused by Capacitor Switching in Wind Power Plants. IEEE Trans. Ind. Appl. 2013, 49, 2810–2819. [Google Scholar] [CrossRef]
- Dionise, T.J.; Lorch, V.; Brazil, B.J. Power Quality Investigation of Back-to-Back Harmonic Filters for a High-Voltage Anode Foil Manufacturing Facility. IEEE Trans. Ind. Appl. 2010, 46, 694–702. [Google Scholar] [CrossRef]
- Kuczek, T.; Florkowski, M.; Piasecki, W. Transformer Switching with Vacuum Circuit Breaker: Case Study of PV Inverter LC Filters Impacton Transient Overvoltages. IEEE Trans. Power Deliv. 2016, 31, 44–49. [Google Scholar] [CrossRef]
- Dudley, R.F.; Fellers, C.L.; Bonner, J.A. Special design considerations for filter banks in arc furnace installations. IEEE Trans. Ind. Appl. 1997, 33, 226–233. [Google Scholar] [CrossRef]
- Spurling, K.L.; Poitras, A.E.; McGranaghan, M.F.; Shaw, J.H. Analysis and Operating Experience for Back-to-Back 115 KV Capacitor Banks. IEEE Trans. Power Deliv. 1987, 2, 1255–1263. [Google Scholar] [CrossRef]
- Furumasu, B.C.; Hasibar, R.M. Design and installation of 500 kV back-to-back shunt capacitor banks. IEEE Trans. Power Deliv. 1992, 7, 539–545. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, H.; Wang, J.; Geng, Y.; Liu, Z.; Jin, L.; Yu, L. Influence of High-Frequency High-Voltage Impulse Conditioning on Back-to-Back Capacitor Bank Switching Performance of Vacuum Interrupters. IEEE Trans. Plasma Sci. 2016, 44, 321–330. [Google Scholar] [CrossRef]
- Kalyuzhny, A. Switching Capacitor Bank Back-to-Back to Underground Cables. IEEE Trans. Power Deliv. 2013, 28, 1128–1137. [Google Scholar] [CrossRef]
- Patcharoen, T.; Ngaopitakkul, A. Transient inrush current detection and classification in 230 kV shunt capacitor bank switching under various transient-mitigation methods based on discrete wavelet transform. IET Gener. Transm. Distrib. 2018, 12, 3718–3725. [Google Scholar] [CrossRef]
- Srisongkram, W.; Fuangpian, P.; Suwanasri, T.; Suwanasri, C. Investigationon Dielectric Failure of High Voltage Equipmentin Substation Caused by Capacitor Bank Switching. J. Electr. Eng. Technol. 2019, 14, 849–860. [Google Scholar] [CrossRef]
- Das, J.C. Power System Harmonics and Passive Filter Designs; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- IEEE Std C37.012-2014. IEEE Guide for Application of Capacitance Current Switching for AC High-Voltage Circuit Breakers Above 1000 V; IEEE: Piscataway, NJ, USA, 2014. [Google Scholar]
- IEEE Std 1531-2003. IEEE Guide for Application and Specification of Harmonic Filters; IEEE: Piscataway, NJ, USA, 2003. [Google Scholar]
- IEEE Std 1036-2010. IEEE Guide for the Application of Shunt Power Capacitors; IEEE: Piscataway, NJ, USA, 2011. [Google Scholar]
- Greenwood, A. Electrical Transients in Power Systems; John Wiley & Sons: Hoboken, NJ, USA, 1971. [Google Scholar]
Contents | Back-To-Back Capacitor Banks | Back-To-Back Filter Banks | |
---|---|---|---|
Inrush current | Peak | ||
Frequency | |||
Remarks | High inrush current and its frequency supplied by other feeders already energized | Low inrush current and its frequency supplied by the source | |
Transient voltage | Peak | High | Low |
Dominant frequency | Several frequencies | Power frequency |
Parameters | Unit | Filter Harmonic Order | |||
---|---|---|---|---|---|
Second | Third | Fourth | Fifth | ||
System frequency | Hz | 50.0 | 50.0 | 50.0 | 50.0 |
Inductance | mH | 56.2 | 17.6 | 17.0 | 9.6 |
Capacitance | μF | 50.0 | 70.0 | 40.0 | 50.0 |
Trapped capacitor voltage (VC) | pu | 1.38 | 1.14 | 1.07 | 1.05 |
TCR | HF5 | HF4 | HF3 | HF2 | |
---|---|---|---|---|---|
Voltage (kV) | 33 kV | ||||
Capacity (MVA) | 150 | 51.4 | 26.3 | 42.4 | 30 |
Inductance (mH) | 19 @ 150 MVA | 2.34 | 7.35 | 8.7 | 39.1 |
Capacitance (μF) | - | 122.5 | 61.3 | 92.3 | 52.5 |
Cable (m) | 220 | 210 | 225 | 240 | 255 |
Condition | CBs | VS (kV) | VL (kV) | VTRV (kV) | Waveforms |
---|---|---|---|---|---|
Individual blocking | HF #2 CB | 26.6 | 61.9 | 88.5 | Figure 14a |
HF #3 CB | 26.3 | 45.8 | 72.1 | Figure 14b | |
HF #4 CB | 26.6 | 43.0 | 69.6 | Figure 14c | |
HF #5 CB | 26.0 | 42.2 | 68.2 | Figure 14d | |
Simultaneous blocking | HF #2 CB | 0.0 | 85.2 | 85.2 | Figure 14e |
HF #3 CB | 0.0 | 39.2 | 39.2 | Figure 14f | |
HF #4 CB | 0.0 | 35.7 | 35.7 | Figure 14g | |
HF #5 CB | 0.0 | 33.7 | 33.7 | Figure 14h |
Opening Time (ms) | TRV (kV) | Waveforms | |||
---|---|---|---|---|---|
Bus VCB (Upper Breaker) | Load VCB (Lower Breaker) | Delta T | Bus VCB | Load VCB | |
62.5 | 67.5 | −5.0 | 84.1 | 0.0 | Figure 15a |
62.5 | 65.5 | −3.0 | 76.8 | 8.5 | Figure 15b |
62.5 | 64.5 | −2.0 | 76.0 | 9.3 | Figure 15c |
62.5 | 62.5 | 0.0 | 53.7 | 31.5 | Figure 15d |
64.5 | 62.5 | 2.0 | 44.7 | 40.5 | Figure 15e |
65.5 | 62.5 | 3.0 | 38.3 | 46.9 | Figure 15f |
67.5 | 62.5 | 5.0 | 35.4 | 66.1 | Figure 15g |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-H.; Kim, J.-O. Analysis and Mitigation on Switching Transients of Medium-Voltage Low-Harmonic Filter Banks. Energies 2020, 13, 2187. https://doi.org/10.3390/en13092187
Kim J-H, Kim J-O. Analysis and Mitigation on Switching Transients of Medium-Voltage Low-Harmonic Filter Banks. Energies. 2020; 13(9):2187. https://doi.org/10.3390/en13092187
Chicago/Turabian StyleKim, Joon-Ho, and Jin-O Kim. 2020. "Analysis and Mitigation on Switching Transients of Medium-Voltage Low-Harmonic Filter Banks" Energies 13, no. 9: 2187. https://doi.org/10.3390/en13092187
APA StyleKim, J. -H., & Kim, J. -O. (2020). Analysis and Mitigation on Switching Transients of Medium-Voltage Low-Harmonic Filter Banks. Energies, 13(9), 2187. https://doi.org/10.3390/en13092187