Managing Power Demand from Air Conditioning Benefits Solar PV in India Scenarios for 2040 †
Abstract
:1. Introduction
2. Methodology
2.1. Scenario Design
2.2. Data and Parameters
- 20 GW of pumped hydro storage with 4 h of storage capacity and 40 GW of hydro capacity with a constant capacity factor of 35%. This amount of total hydro capacity (60 GW) is consistent with estimates of installed capacity of hydro by IEA WEO 2018 New Policies Scenario (NPS) for the next five years in India. Our assumption that hydro capacity will not grow in the next decades is consistent with the finding by Lawrenz et al. [3] that hydro capacity will stay almost constant between 2015 and 2050. Pumped hydro storage is dispatched endogenously, while the rest of the hydro capacity is available for dispatch at a constant capacity factor of 35% at all hours of the year, consistent with annual average hydro capacity factor reported by the authors of [56].
- A wind capacity of 209 GW, equivalent to 11% of wind electricity in final electricity demand, consistent with the IEA WEO 2018 New Policies Scenario (NPS)
- A minimum of 147 GW of standing hard coal capacity in 2040 to reflect the current heavy reliance of India on coal on one hand and the potential coal-phase out on the other.
- A maximum capacity limit of 47 GW for nuclear. This value is the maximum value for India in the 2018 IEA WEO scenarios, and seems very ambitious given the historically long build times of nuclear power plants in India, as well as the fact that the government target for 2031 is only 22 GW [57].
2.3. Power Sector Model (DIETER)
2.4. Postprocessing
3. Results and Interpretations
3.1. Cost-Efficient Solar PV Shares without DSM
3.2. Deployment of DSM
3.3. Cost-Efficient Solar PV Shares with DSM
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Estimation of Hourly AC Demand
Appendix B. Power Sector Modeling
State | Wind Farm Site | Latitude | Longtitude |
---|---|---|---|
Tamil Nadu | Mupandal wind farm | 8.25000 | 77.59000 |
Gujarat | Lamda Danida | 21.91900 | 69.26300 |
Rajasthan | Jaisalmer Wind park | 26.92000 | 70.90000 |
Andhra Pradesh | Beluguppa wind park | 14.71528 | 77.13528 |
Maharashtra | Dhalgaon wind park | 17.11722 | 74.98667 |
Karnataka | Acciona Tuppadahalli | 13.91028 | 76.03056 |
Madhya Pradesh | Mamatkheda | 23.33306 | 75.03583 |
Parameter | Nuclear | Hard Coal | CCGT | OCGT | Unit |
---|---|---|---|---|---|
Efficiency | 34.3 | 43 | 58 | 45.7 | % |
Carbon content | 0 | 0.354 | 0.202 | 0.202 | t/MWh |
Overnight investment costs | 5500 | 1580 | 700 | 400 | USD/kW |
Annual fixed costs | 140 | 55 | 25 | 20 | USD/kW |
Variable O&M costs | - | - | USD/kWh | ||
Load change costs up and down | 50 | 30 | 20 | 15 | USD/MW |
Technical lifetime | 40 | 35 | 25 | 25 | Years |
Interest rate | 7 | 7 | 7 | 7 | % |
Maximum capacity factor | 85 | 85 | 85 | 85 | % |
Maximum load change for reserves | 4 | 6 | 8 | 15 | % of capacity per minute |
Fuel Type/ CO2 Price | Value | Unit |
---|---|---|
Hard coal | 14 | USD/MWh-th |
Gas | 34 | USD/MWh-th |
Nuclear | 3 | USD/MWh-th |
CO2 price | 50 | USD/t CO2 |
Parameter | Precooling | CWS | Unit |
---|---|---|---|
Load shifting costs | 1 | 1 | USD/MWh |
Overnight investment costs | 30 | 100 | USD/kW |
Annual fixed costs | - | - | USD/kW |
Interest rate | 7 | 7 | % |
Technical lifetime | 10 | 10 | Years |
Efficiency | 70 | 90 | % |
DSM maximum duration | 4 | 8 | Hours |
DSM recovery time | 1 | 1 | Hours |
Maximum installable capacity | 350,000 | 350,000 | MW |
References
- “Low Renewable Auction Prices in India–Aggressive Bids or Unrealistic Expectations?” IHS Markit, 30. 2019. Available online: https://ihsmarkit.com/research-analysis/low-renewable-auction-prices-in-india.html (accessed on 7 February 2020).
- India Targets 500GW of Renewables by 2030: Official|Recharge. Recharge|Latest Renewable Energy News. Available online: https://www.rechargenews.com/transition/india-targets-500gw-of-renewables-by-2030-official/2-1-628026 (accessed on 7 February 2020).
- Lawrenz, L.; Xiong, B.; Lorenz, L.; Krumm, A.; Hosenfeld, H.; Burandt, T.; Löffler, K.; Oei, P.Y.; Von Hirschhausen, C. Exploring Energy Pathways for the Low-Carbon Transformation in India—A Model-Based Analysis. Energies 2018, 11, 3001. [Google Scholar] [CrossRef] [Green Version]
- Gadre, R.; Anandarajah, G. Assessing the evolution of India’s power sector to 2050 under different CO2 emissions rights allocation schemes. Energy Sustain. Dev. 2019, 50, 126–138. [Google Scholar] [CrossRef]
- Anandarajah, G.; Gambhir, A. India’s CO2 emission pathways to 2050: What role can renewables play? Appl. Energy 2014, 131, 79–86. [Google Scholar] [CrossRef]
- McCollum, D.L.; Zhou, W.; Bertram, C.; De Boer, H.S.; Bosetti, V.; Busch, S.; Després, J.; Drouet, L.; Emmerling, J.; Fay, M.; et al. Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals. Nat. Energy 2018, 7, 589–599. [Google Scholar] [CrossRef] [Green Version]
- Ueckerdt, F.; Brecha, R.; Luderer, G. Analyzing major challenges of wind and solar variability in power systems. Renew. Energy 2015, 81, 1–10. [Google Scholar] [CrossRef]
- Sivaram, V.; Kann, S. Solar Power Needs a More Ambitious Cost Target. Nat. Energy 2016, 1, 1–3. Available online: https://www.nature.com/articles/nenergy201636 (accessed on 23 August 2018). [CrossRef]
- Creutzig, F.; Agoston, P.; Goldschmidt, J.C.; Luderer, G.; Nemet, G.; Pietzcker, R.C. The underestimated potential of solar energy to mitigate climate change. Nat. Energy 2017, 2, 17140. [Google Scholar] [CrossRef]
- Hu, J.; Harmsen, R.; Crijns-Graus, W.; Worrell, E.; van den Broek, M. Identifying barriers to large-scale integration of variable renewable electricity into the electricity market: A literature review of market design. Renew. Sustain. Energy Rev. 2018, 81, 2181–2195. [Google Scholar] [CrossRef]
- Mills, A.D.; Wiser, R.H. Strategies to mitigate declines in the economic value of wind and solar at high penetration in California. Appl. Energy 2015, 147, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Hirth, L. The market value of variable renewables: The effect of solar wind power variability on their relative price. Energy Econ. 2013, 38, 218–236. [Google Scholar] [CrossRef] [Green Version]
- Clò, S.; D’Adamo, G. The dark side of the sun: How solar power production affects the market value of solar and gas sources. Energy Econ. 2015, 49, 523–530. [Google Scholar] [CrossRef]
- Hale, E.T.; Stoll, B.L.; Novacheck, J.E. Integrating solar into Florida’s power system: Potential roles for flexibility. Sol. Energy 2018, 170, 741–751. [Google Scholar] [CrossRef]
- Deshmukh, R.; Callaway, D.; Abhyankar, N.; Phadke, A. Cost and Value of Wind and Solar in India’s Electric System in 2030. In Proceedings of the 1st International Conference on Large-Sale Integration of Renewable Energies in India, New Delhi, India, 6–8 Septeber 2017; Available online: https://regridintegrationindia.org/wp-content/uploads/sites/3/2017/09/8B_1_GIZ17_174_paper_Ranjit_Deshmukh.pdf (accessed on 26 July 2019).
- Palchak, J.D.; Chernyakhovskiy, I.; Bowen, T.; Narwade, V. India 2030 Wind and Solar Integration Study: Interim Report; NREL/TP-6A20-73854; 1524771; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2019. [Google Scholar] [CrossRef]
- Chaturvedi, V.; Koti, P.N.; Ramakrishnan, A. Sustainable Development, Uncertainties, and India’s Climate Policy: Pathways towards Nationally Determined Contribution and Mid-Century Strategy. CEEW. 2018. Available online: https://www.ceew.in/sites/default/files/CEEW_Sustainable_Development_Uncertainties_India_Climate_Policy_30Apr18.pdf (accessed on 3 December 2019).
- Wimmler, C.; Hejazi, G.; Fernandes, E.D.; Moreira, C.; Connors, S. Impacts of Load Shifting on Renewable Energy Integration. Energy Procedia 2017, 107, 248–252. [Google Scholar] [CrossRef]
- Braff, W.A.; Mueller, J.M.; Trancik, J.E. Value of storage technologies for wind and solar energy. Nat. Clim Chang. 2016, 6, 964–969. [Google Scholar] [CrossRef]
- Cheng, F.; Willard, S.; Hawkins, J.; Arellano, B.; Lavrova, O.; Mammoli, A. Applying battery energy storage to enhance the benefits of photovoltaics. In Proceedings of the 2012 IEEE Energytech, Cleveland, OH, USA, 29–31 May 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Castro, M.; Delgado, A.; Argul, F.J.; Colmenar, A.; Yeves, F.; Peire, J. Grid-connected PV buildings: Analysis of future scenarios with an example of Southern Spain. Sol. Energy 2005, 79, 86–95. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; d’Accadia, M.D.; Vicidomini, M. Dynamic simulation, energy and economic comparison between BIPV and BIPVT collectors coupled with micro-wind turbines. Energy 2020, 191, 116439. [Google Scholar] [CrossRef]
- Bellocchi, S.; Manno, M.; Noussan, M.; Prina, M.G.; Vellini, M. Electrification of transport and residential heating sectors in support of renewable penetration: Scenarios for the Italian energy system. Energy 2020, 196, 117062. [Google Scholar] [CrossRef]
- Brown, P.R.; O’Sullivan, F.M. Shaping photovoltaic array output to align with changing wholesale electricity price profiles. Appl. Energy 2019, 256, 113734. [Google Scholar] [CrossRef]
- Ebrahimi, M. Storing electricity as thermal energy at community level for demand side management. Energy 2020, 193, 116755. [Google Scholar] [CrossRef]
- Bloess, A.; Schill, W.-P.; Zerrahn, A. Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials. Appl. Energy 2018, 212, 1611–1626. [Google Scholar] [CrossRef]
- Ali, S.M.H.; Lenzen, M.; Huang, J. Shifting air-conditioner load in residential buildings: Benefits for low-carbon integrated power grids. IET Renew. Power Gener. 2018, 12, 1314–1323. [Google Scholar] [CrossRef]
- Arteconi, A.; Hewitt, N.J.; Polonara, F. State of the art of thermal storage for demand-side management. Appl. Energy 2012, 93, 371–389. [Google Scholar] [CrossRef]
- Levesque, A.; Pietzcker, R.C.; Baumstark, L.; de Stercke, S.; Grübler, A.; Luderer, G. How much energy will buildings consume in 2100? A global perspective within a scenario framework. Energy 2018, 148, 514–527. [Google Scholar] [CrossRef] [Green Version]
- Isaac, M.; van Vuuren, D.P. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy 2009, 37, 507–521. [Google Scholar] [CrossRef]
- Waite, M.; Cohen, E.; Torbey, H.; Piccirilli, M.; Tian, Y.; Modi, V. Global trends in urban electricity demands for cooling and heating. Energy 2017, 127, 786–802. [Google Scholar] [CrossRef] [Green Version]
- Wenz, L.; Levermann, A.; Auffhammer, M. North–south polarization of European electricity consumption under future warming. Proc. Natl. Acad. Sci. USA 2017, 114, E7910–E7918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakubcionis, M.; Carlsson, J. Estimation of European Union residential sector space cooling potential. Energy Policy 2017, 101, 225–235. [Google Scholar] [CrossRef]
- IEA. The Future of Cooling; International Energy Agency: Paris, France, 2018. [Google Scholar]
- Phadke, A.; Abhyankar, N.; Shah, N. Avoiding 100 New Power Plants by Increasing Efficiency of Room Air Conditioners in India: Opportunities and Challenges. In Proceedings of the 7th International Conference on Energy Efficiency in Domestic Appliances and Lighting (EEDAL’13), Coimbra, Portugal, 11–13 September 2013. [Google Scholar]
- Cole, W.J.; Rhodes, J.D.; Gorman, W.; Perez, K.X.; Webber, M.E.; Edgar, T.F. Community-scale residential air conditioning control for effective grid management. Appl. Energy 2014, 130, 428–436. [Google Scholar] [CrossRef]
- Turner, W.J.N.; Walker, I.S.; Roux, J. Peak load reductions: Electric load shifting with mechanical pre-cooling of residential buildings with low thermal mass. Energy 2015, 82, 1057–1067. [Google Scholar] [CrossRef]
- Yang, L.; Li, Y. Cooling load reduction by using thermal mass and night ventilation. Energy Build. 2008, 40, 2052–2058. [Google Scholar] [CrossRef]
- Wolisz, H.; Harb, H.; Matthes, P.; Streblow, R.; Müller, D. Dynamic Simulation of Thermal Capacity and Charging/Discharging Performance for Sensible Heat Storage in Building Wall Mass. In Proceedings of the BS2013, Chambery, France, 26–28 August 2013. [Google Scholar]
- Nazari-Heris, M.; Kalavani, F. Evaluation of Peak Shifting and Energy Saving Potential of Ice Storage Based Air Conditioning Systems in Iran. J. Oper. Autom. Power Eng. 2017, 5, 163–170. [Google Scholar]
- Lo, C.-C.; Tsai, S.-H.; Lin, B.-S. Ice Storage Air-Conditioning System Simulation with Dynamic Electricity Pricing: A Demand Response Study. Energies 2016, 9, 113. [Google Scholar] [CrossRef] [Green Version]
- Deetjen, T.A.; Reimers, A.S.; Webber, M.E. Can storage reduce electricity consumption? A general equation for the grid-wide efficiency impact of using cooling thermal energy storage for load shifting. Environ. Res. Lett. 2018, 13, 024013. [Google Scholar] [CrossRef]
- Hasnain, S.M. Review on sustainable thermal energy storage technologies, Part II: Cool thermal storage. Energy Convers. Manag. 1998, 39, 1139–1153. [Google Scholar] [CrossRef]
- Sarbu, I.; Sebarchievici, C. A Comprehensive Review of Thermal Energy Storage. Sustainability 2018, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- Van Asselt, A.; Reindl, D.T.; Nellis, G.F. Policy recommendations for using cool thermal energy storage to increase grid penetration of renewable power sources (1607-RP). Sci. Technol. Built Environ. 2017, 24, 759–769. [Google Scholar] [CrossRef]
- Deetjen, T.A.; Vitter, J.S.; Reimers, A.S.; Webber, M.E. Optimal dispatch and equipment sizing of a residential central utility plant for improving rooftop solar integration. Energy 2018, 147, 1044–1059. [Google Scholar] [CrossRef]
- Goldenberg, C.; Dyson, M.; Masters, H. Demand Flexibility—The key to enabling a low-cost, low-carbon grid. Rocky Mt. Inst. 2018, 13, 6. [Google Scholar]
- Zerrahn, A.; Schill, W.-P. A Greenfield Model to Evaluate Long-Run Power Storage Requirements for High Shares of Renewables. SSRN J. 2015. [Google Scholar] [CrossRef] [Green Version]
- Peppanen, J.; Reno, M.J.; Grijalva, S. Thermal energy storage for air conditioning as an enabler of residential demand response. In Proceedings of the 2014 North American Power Symposium (NAPS), Pullman, WA, USA, 7–9 September 2014; pp. 1–6. [Google Scholar]
- Herter, K.; Okuneva, Y. SMUD’s 2012 Residential Precooling Study—Load Impact Evaluation. 2013. Available online: http://www.herterenergy.com/pdfs/Publications/2013_Herter_SMUD_ResPrecooling.pdf (accessed on 9 February 2018).
- Levesque, A.; Pietzcker, R.C.; Luderer, G. Halving energy demand from buildings: The impact of low consumption practices. Technol. Forecast. Soc. Chang. 2019, 146, 253–266. [Google Scholar] [CrossRef]
- Operation Performance of Generating Stations in the Country during the Year 2010–2011—An Overview. CEA: New Delhi, India, 2011; Available online: http://cea.nic.in/reports/annual/generationreview/generation_review-2010.pdf (accessed on 3 April 2020).
- Boßmann, T.; Pfluger, B.; Wietschel, M. The shape matters! How structural changes in the electricity load curve affect optimal investments in generation capacity. In Proceedings of the 10th International Conference on the European Energy Market (EEM), Stockholm, Sweden, 28–30 May 2013; pp. 1–8. [Google Scholar]
- Palchak, D.; Cochran, J.; Deshmukh, R.; Ehlen, A.; Soonee, R.; Narasimhan, S.; Joshi, M.; McBennett, B.; Milligan, M.; Sreedharan, P.; et al. Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India’s Electric Grid, National Study; Lawrence Berkeley National Lab.(LBNL): Berkeley, CA, USA; National Renewable Energy Lab.(NREL): Golden, CO, USA; Power System Operation Corporation (POSOCO): New Delhi, India; US Agency for International Development (USAID): Washington, DC, USA, 2017; Volume 1. [Google Scholar]
- 1.17-System Advisor Model (SAM), Version 2017; NREL: Golden, CO, USA, 2017.
- Palchak, D.; Cochran, J.; Deshmukh, R.; Ehlen, A.; Soonee, R.; Narasimhan, S.; Joshi, M.; McBennett, B.; Milligan, M.; Sreedharan, P.; et al. Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India’s Electric Grid; NREL/TP-6A20-68530; 1369138; National Renewable Energy Lab.(NREL): Golden, CO, USA, 2017; Vol. I—National Study. [Google Scholar] [CrossRef] [Green Version]
- Schneider, M.; Froggatt, A.; Hazemann, J.; von Hirschhausen, C.; Katsuta, T.; Wealer, B.; Lovins, A.B.; Ramana, M.V.; Stienne, A.; Friedhelm, M. The World Nuclear Industry Status Report 2019. A Mycle Scheider Consulting Project. 2019. Available online: https://www.worldnuclearreport.org/IMG/pdf/wnisr2019-v2-hr.pdf (accessed on 2 March 2020).
- De Vita, A.; Kielichowska, I.; Mandatowa, P.; Capros, P.; Dimopoulou, E.; Evangelopoulou, S.; Fotiou, T.; Kannavou, M.; Siskos, P.; Zazias, G. Technology Pathways in Decarbonisation Scenarios; E3 Modelling; Tractebel: Brussels, Belgium, 2018. [Google Scholar]
- Schröder, A.; Kunz, F.; Meiss, J.; Mendelevitch, R.; von Hirschhausen, C. Current and Prospective Costs of Electricity Generation until 2050. DIW. 2013. Available online: https://www.diw.de/documents/publikationen/73/diw_01.c.424566.de/diw_datadoc_2013-068.pdf (accessed on 5 April 2020).
- International Energy Agency (IEA). World Energy Outlook 2018. 2018. Available online: https://webstore.iea.org/world-energy-outlook-2018 (accessed on 24 June 2019).
- Projected Costs of Generating Electricity 2015 Edition; IEA & NEA: Paris, France, 2015.
- Ray, D. Lazard’s Levelized Cost of Energy Analysis—Version 13.0; Lazard: New York, NY, USA, 2019; p. 20. [Google Scholar]
- Aboumahnoub, T.; Auer, C.; Bauer, N.; Baumstark, L.; Bertram, C.; Bi, S.; Dietrich, J.; Dirnaichner, A.; Giannousakis, A.; Haller, M.; et al. REMIND—Regional Model of Investments and Development v2. Zenodoo 2020. [Google Scholar] [CrossRef]
- Schill, W.-P.; Zerrahn, A. Long-run power storage requirements for high shares of renewables: Results and sensitivities. Renew. Sustain. Energy Rev. 2018, 83, 156–171. [Google Scholar] [CrossRef]
- Zerrahn, A.; Schill, W.-P. Long-run power storage requirements for high shares of renewables: Review and a new model. Renew. Sustain. Energy Rev. 2017, 79, 1518–1534. [Google Scholar] [CrossRef]
- Zerrahn, A.; Schill, W.-P. On the representation of demand-side management in power system models. Energy 2015, 84, 840–845. [Google Scholar] [CrossRef] [Green Version]
- Gils, H.C. Assessment of the theoretical demand response potential in Europe. Energy 2014, 67, 1–18. [Google Scholar] [CrossRef]
- Weedon, G.P.; Gomes, S.; Viterbo, P.; Shuttleworth, W.J.; Blyth, E.; Österle, H.; Adam, J.C.; Bellouin, N.; Boucher, O.; Best, M. Creation of the WATCH Forcing Data and Its Use to Assess Global and Regional Reference Crop Evaporation over Land during the Twentieth Century. J. Hydrometeor. 2011, 12, 823–848. [Google Scholar] [CrossRef] [Green Version]
- Weedon, G.P.; Balsamo, G.; Bellouin, N.; Gomes, S.; Best, M.J.; Viterbo, P. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 2014, 50, 7505–7514. [Google Scholar] [CrossRef] [Green Version]
- McMahon, J.E.; Chan, P.; Eto, J.; Koomey, J.; Levine, M.; Pignone, C.; Ruderman, H. The LBL Residential Energy and Hourly Demand Models. Strateg. Plan. Energy Nat. Resour. 1987, 205–212. [Google Scholar]
- Stocker, D.V. Load management study of simulated control of residential central air conditioners on the Detroit Edison Company System. IEEE Trans. Power Appar. Syst. 1980, PAS-99, 1616–1624. [Google Scholar] [CrossRef]
DSM Parameter | Scenarios | Unit | ||
---|---|---|---|---|
noDSM (Reference Scenario: No Flexibility for Shifting Exogenous AC Demand) | Precooling (Only DSM Option 1) | CWS (Only DSM Option 2) | ||
Overnight investment costs | / | 30 | 100 | USD/kW |
Round-trip Efficiency | / | 70 | 90 | % |
Maximum DSM duration | / | 4 | 8 | Hours |
Parameter | Year 2010 | Year 2040 | Unit |
---|---|---|---|
Total load | 769 | 3535 | TWh |
Total AC demand | 57 | 807 | TWh |
Load factor (%) | 84 | 67 | % |
Peak load (GW) | 105 | 606 | GW |
Average load (GW) | 88 | 403 | GW |
Minimum load (GW) | 66 | 259 | GW |
Maximum peak-coincident AC demand (GW) | 25 | 350 | GW |
Time of total peak load | 8:00 PM | 5:00 PM | |
Month of peak load | October | May |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ershad, A.M.; Pietzcker, R.; Ueckerdt, F.; Luderer, G. Managing Power Demand from Air Conditioning Benefits Solar PV in India Scenarios for 2040. Energies 2020, 13, 2223. https://doi.org/10.3390/en13092223
Ershad AM, Pietzcker R, Ueckerdt F, Luderer G. Managing Power Demand from Air Conditioning Benefits Solar PV in India Scenarios for 2040. Energies. 2020; 13(9):2223. https://doi.org/10.3390/en13092223
Chicago/Turabian StyleErshad, Ahmad Murtaza, Robert Pietzcker, Falko Ueckerdt, and Gunnar Luderer. 2020. "Managing Power Demand from Air Conditioning Benefits Solar PV in India Scenarios for 2040" Energies 13, no. 9: 2223. https://doi.org/10.3390/en13092223
APA StyleErshad, A. M., Pietzcker, R., Ueckerdt, F., & Luderer, G. (2020). Managing Power Demand from Air Conditioning Benefits Solar PV in India Scenarios for 2040. Energies, 13(9), 2223. https://doi.org/10.3390/en13092223