Advanced Control of a Compensator Motor Driving a Variable Speed Diesel Generator with Rotating Stator
Abstract
:1. Introduction
1.1. Variable Speed Diesel Generator
1.2. Variable Speed AC Motor
2. Variable Speed Diesel Generator (VSDG) with Rotating Stator
3. Architecture of the VSDG with Rotating Stator
4. Sensor-Less Space Vector Modulation (SVM) Speed Controller Based on Constant V/F
5. AC Motor Speed Control with Microcontrollers
- High reliability achieved by a self-correction loop.
- Ease of integration with VFDs.
- Fast processing speed and high accuracy.
- High efficiency due to accurate switching command.
6. Design of the Speed Control Algorithm and Numerical Simulation
7. Implementation and Experiments
8. Results and Discussion
9. Experimental Validation
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
VSDG | Variable Speed Diesel Generator |
DG | Diesel Generator |
DE | Diesel Engine |
AC | Alternative Current |
GHG | Greenhouse Gases |
CVT | Continuous Variable Transmission |
PID | Proportional Integral and Derivative |
ED | Electric Drive |
CM | Compensatory Motor |
SG | Synchronous Generator |
DPC | Direct Power Control |
VSI | Voltage Source Inverter |
SVM | Space Vector Modulation |
DQ | Direct Quadrature |
VSC | Voltage Source Converter |
RC | Resistor/Capacitor |
PWM | Pulse Width Modulation |
IGBT | Insulated-Gate Bipolar Transistor |
VFD | Variable Frequency Drive |
ADC | Analog to Digital Converter |
THD | Total Harmonic Distortion |
RPM | Revolution Per Minute |
References
- Leuchter, J.; Rerucha, V.; Krupka, Z.; Bauer, P. Dynamic behavior of mobile generator set with variable speed and diesel engine. In Proceedings of the 2007 IEEE Power Electronics Specialists Conference, Orlando, FL, USA, 17–21 June 2007; pp. 2287–2293. [Google Scholar]
- Ibrahim, H.; Younès, R.; Basbous, T.; Ilinca, A.; Dimitrova, M. Optimization of diesel engine performances for a hybrid wind–diesel system with compressed air energy storage. Energy 2011, 36, 3079–3091. [Google Scholar] [CrossRef]
- Kawabata, Y.; Oka, T.; Ejiogu, E.; Kawabata, T. Variable speed constant frequency stand-alone power generator using wound-rotor induction machine. In Proceedings of the 4th International Power Electronics and Motion Control Conference (IPEMC 2004), Xi’an, China, 14–16 August 2004; Volume 1773, pp. 1778–1784. [Google Scholar]
- Lee, J.; Lee, S.; Sul, S. Variable-Speed Engine Generator With Supercapacitor: Isolated Power Generation System and Fuel Efficiency. IEEE Trans. Ind. Appl. 2009, 45, 2130–2135. [Google Scholar] [CrossRef]
- Brace, C.; Deacon, M.; Vaughan, N.; Horrocks, R.; Burrows, C. An operating point optimizer for the design and calibration of an integrated diesel/continuously variable transmission powertrain. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 1999, 213, 215–226. [Google Scholar] [CrossRef]
- Brown, D. Variable Speed Gensets; CVT Corp: Intelligent Energy Systems, LLC: Anchorage, AK, USA, 2013; pp. 1–17. [Google Scholar]
- Pena, R.; Clare, J.; Asher, G. Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEE Proc. Electr. Power Appl. 1996, 143, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Waris, T.; Nayar, C.V. Variable speed constant frequency diesel power conversion system using doubly fed induction generator (DFIG). In Proceedings of the 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 15–19 June 2008; pp. 2728–2734. [Google Scholar]
- Ferdiansyah, I.; Rusli, M.R.; Praharsena, B.; Toar, H.; Ridwan; Purwanto, E. Speed Control of Three Phase Induction Motor Using Indirect Field Oriented Control Based on Real-Time Control System. In Proceedings of the 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE), Kuta, Indonesia, 24–26 July 2018; pp. 438–442. [Google Scholar]
- Ahmad, M. Vector Control of Induction Motor Drives. In High Performance AC Drives: Modelling Analysis and Control; Springer: Berlin/Heidelberg, Germany, 2010; pp. 47–75. [Google Scholar]
- Chattopadhyay, A. Advances in vector control of ac motor drives—A review. Sadhana-Acad. Proc. Eng. Sci. 1997, 22, 797–820. [Google Scholar] [CrossRef]
- Achanta, R.K.; Pamula, V.K. DC motor speed control using PID controller tuned by jaya optimization algorithm. In Proceedings of the 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), Chennai, India, 21–22 September 2017; pp. 983–987. [Google Scholar]
- Doan, P.T.; Bui, T.L.; Kim, H.K.; Kim, S.B. Sliding-mode observer design for sensorless vector control of AC induction motor. In Proceedings of the 2013 9th Asian Control Conference (ASCC), Istanbul, Turkey, 23–26 June 2013; pp. 1–5. [Google Scholar]
- Wang, X.; Reitz, M.; Yaz, E.E. Field Oriented Sliding Mode Control of Surface-Mounted Permanent Magnet AC Motors: Theory and Applications to Electrified Vehicles. IEEE Trans. Veh. Technol. 2018, 67, 10343–10356. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.N.; Singh, B.; Singh, B.P. Performance analysis of a closed-loop field oriented cage induction motor drive. Electr. Power Syst. Res. 1994, 29, 69–81. [Google Scholar] [CrossRef]
- Kővári, A.; Schmidt, I.; Kádár, I. Current-control of induction motor drives: Comparison of inverter control methods. In Proceedings of the IEEE Postgraduate Conference on Electric Power Systems, Budapest, Hungary, 11–14 August 2002; pp. 45–50. [Google Scholar]
- Mitronikas, E.D.; Safacas, A.N. An improved sensorless vector-control method for an induction motor drive. IEEE Trans. Ind. Electron. 2005, 52, 1660–1668. [Google Scholar] [CrossRef]
- Mobarra, M.; Issa, M.; Rezkallah, M.; Ilinca, A. Performance Optimization of Diesel Generators Using Permanent Magnet Synchronous Generator with Rotating Stator. Energy Power Eng. 2019, 11, 24. [Google Scholar] [CrossRef] [Green Version]
- Mobarra, M.; Fiset, J.; Ilinca, A. Modeling and optimization of the energy production based on Eo-Synchro. Power Eng. 2017, 3, 3–9. [Google Scholar]
- Issa, M.; Fiset, J.; Ibrahim, H.; Ilinca, A. Eco-Friendly Selection of Diesel Generator Based on Genset-Synchro Technology for Off-Grid Remote Area Application in the North of Quebec. Energy Power Eng. 2019, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Issa, M.; Ibrahim, H.; Lepage, R.; Ilinca, A. A Review and Comparison on Recent Optimization Methodologies for Diesel Engines and Diesel Power Generators. J. Power Energy Eng. 2019, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Issa, M.; Fiset, J.; Mobarra, M.; Ibrahim, H.; Ilinca, A. Optimizing the performance of a 500kW Diesel Generator: Impact of the Eo-Synchro concept on fuel consumption and greenhouse gases. Power Eng. 2018, 23, 22–31. [Google Scholar]
- Issa, M.; Ait-Yahia, K.; Lepage, R.; Ibrahim, H.; Ilinca, A.; Ghandour, M. Integrated A Variable Frequency Drive for a Diesel-Generating Set Using the Genset-Synchro Concept. Int. J. Eng. Res. Technol. 2019, 8, 232–239. [Google Scholar]
- Fiset, J. Mechanical Regulation of Electrical Frequency In An Electrical Generation System. Canadian Intellectual Property Office-Patent No. 2697420, 22 February 2010. [Google Scholar]
- Thomas Howard, B. Variable Frequency Drive Systems. In Energy Production Systems Engineering; IEEE: Hoboken, NJ, USA, 2017; pp. 441–466. [Google Scholar]
- Ejlali, A.; Khaburi, D.A. Power quality improvement using nonlinear-load compensation capability of variable speed DFIG based on DPC-SVM method. In Proceedings of the 5th Annual International Power Electronics, Drive Systems and Technologies Conference (PEDSTC 2014), Tehran, Iran, 5–6 February 2014; pp. 280–284. [Google Scholar]
- Malinowski, M.; Jasinski, M.; Kazmierkowski, M.P. Simple direct power control of three-phase PWM rectifier using space-vector modulation (DPC-SVM). IEEE Trans. Ind. Electron. 2004, 51, 447–454. [Google Scholar] [CrossRef]
- Petruzella, F. Electric Motors and Control Systems; McGraw-Hill, Inc.: New York, NY, USA, 2009. [Google Scholar]
- Ali, Y.; Noor, S.; Bashi, S.; Hassan, M. Microcontroller performance for DC motor speed control system. In Proceedings of the National Power Engineering Conference (PECon 2003), Bangi, Malaysia, 15–16 December 2003; pp. 104–109. [Google Scholar]
RPM | Sample Counter | Number Samples | Active Power | Frequency | Figure 7 |
---|---|---|---|---|---|
1200 | 126 unit | 245 DEC | 653.736 W | 40.8163 Hz | a |
1500 | 120 unit | 197 DEC | 485.672 W | 50.7614 Hz | b |
1800 | 118 unit | 169 DEC | 270.041 W | 59.1716 Hz | c |
Application Specification | Quantity |
---|---|
Squirrel-Cage Motor | 2 KW |
pole | 4 |
Stator Winding | Star or Delta |
Torque | 10.8 N·m |
Efficiency | 80% |
Microcontroller Card | FRDM-KL25Z |
Frequency | 48MHz |
Sensor | MMA8451Q |
Connectivity | MCU IMCU I/O |
Power Converter | ABB ACS355-0 3E |
PN | 4 KW (5HP) |
U1 | 3–400 V/ 480 V |
I1 | 14 A /6.4 A |
f1 | 48–63 Hz |
Variable Resistance | 2 KW |
Resistance | 240/120/60/60/30 Ω |
Accuracy | 5% |
Nominal Voltage | 120 V—AC/DC |
Current/Voltage Isolator | 0.2 KW |
Maximum Continuous Current | 1/5 A |
Phase A | Phase B | Phase C | ||||
---|---|---|---|---|---|---|
Power (KW) | 0.482 | 0.259 | 0.527 | 0.276 | 0.433 | 0.295 |
Current (A) | 7 | 5 | 9 | 6 | 7 | 4 |
Frequency (Hz) | 49.24 | 59.96 | 49.24 | 59.96 | 49.24 | 59.96 |
Harmonic (%) | 7.3 | 7.7 | 7.3 | 7.7 | 7.3 | 7.7 |
V (RMS) | 119.37 | 121.34 | 119.3 | 121.7 | 119.4 | 122.2 |
Power Factor | 0.69 | 0.61 | 0.63 | 0.38 | 0.41 | 0.37 |
Speed (rpm) | 1000 | 1200 | 1500 | 1800 |
Load Power Per Phase (W) | 1000 | 600 | 400 | 200 |
Numerical (rpm) | 971 | 1182 | 1482 | 1792 |
Experiment (rpm) | 955 | 1167 | 1497 | 1798 |
Error % | 1.64 | 1.26 | 1.01 | 0.33 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mobarra, M.; Tremblay, B.; Rezkallah, M.; Ilinca, A. Advanced Control of a Compensator Motor Driving a Variable Speed Diesel Generator with Rotating Stator. Energies 2020, 13, 2224. https://doi.org/10.3390/en13092224
Mobarra M, Tremblay B, Rezkallah M, Ilinca A. Advanced Control of a Compensator Motor Driving a Variable Speed Diesel Generator with Rotating Stator. Energies. 2020; 13(9):2224. https://doi.org/10.3390/en13092224
Chicago/Turabian StyleMobarra, Mohammadjavad, Bruno Tremblay, Miloud Rezkallah, and Adrian Ilinca. 2020. "Advanced Control of a Compensator Motor Driving a Variable Speed Diesel Generator with Rotating Stator" Energies 13, no. 9: 2224. https://doi.org/10.3390/en13092224
APA StyleMobarra, M., Tremblay, B., Rezkallah, M., & Ilinca, A. (2020). Advanced Control of a Compensator Motor Driving a Variable Speed Diesel Generator with Rotating Stator. Energies, 13(9), 2224. https://doi.org/10.3390/en13092224