Reservoir Properties of Low-Permeable Carbonate Rocks: Experimental Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Whole Core Samples
2.1.2. Core Plugs and Mini Cores
2.1.3. Rock Chips and Caps
2.1.4. Petrographic Thin Sections
2.2. Methods & Techniques
2.2.1. Conventional Gas Porosity and Permeability of Plugs
2.2.2. Nuclear Magnetic Resonance
2.2.3. Darcypress Permeability
2.2.4. Mercury Injection Porosimetry
2.2.5. Computed Tomography Scan Imaging
2.2.6. Scanning Electron Microscopy
3. Results
3.1. Porosity and Permeability
3.2. Microstructural Characterization
3.3. Pore Size Distributions
4. Discussion
4.1. Limitations of Pressure Pulse-Decay Technique to Measure Core-Plug Gas Porosity and Permeability
4.2. NMR Delivers the Highest Porosity
4.3. Pseudo-Steady-State Technique Delivers the Lowest Permeability
4.4. Standard Solvent-Cleaning Protocols Adversely Affect Reservoir Properties
4.5. Void Space Structure Characterization Explains Low Reservoir Properties
4.6. Reservoir Properties of Whole Cores
5. Conclusions
- The gas volumetric core-plug gas-porosity results did not confirm the applicability of the PDP technique for the target rock samples. NMR delivered the highest porosity values due to its physical principle of non-invasive sensing. NMR–LS, NMR–gas porosity comparisons showed that NMR was the most appropriate technique for total porosity determination;
- MICP porosity matched both NMR and imaging results and highlighted the different effects of solvent extraction on the throat size distribution of the target rock samples. The first was vanishing pore throats with sizes in the range 9–50 nm, followed by a redistribution of the liberated void volume into two ranges: 3–8 and 50–200 nm. The second was a partial removal of OM from voids in the mineral matrix, thereby boosting their effective size and volume;
- PDP core-plug gas permeability measurements were consistent but overestimated in comparison to PSS results. We observed the difference reaching two orders of magnitude;
- petrographic thin-section analysis, as well as CT and μCT, did not resolve the void space structure of the target rock samples. SEM proved to be the only feasible method for void-scale imaging with a spatial resolution up to 5 nm. The results confirmed the presence of natural voids of two major types. The first type was OM-hosted pores, with dimensions of less than 500 nm. The second type was sporadic voids in the mineral matrix (biogenic clasts), rarely larger than 250 nm;
- comparisons between whole-core and core-plug reservoir properties showed substantial differences in both porosity (by a factor of 2) and permeability (up to 4 orders of magnitude) caused by spatial heterogeneity and scaling.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Supplementary Figures
Appendix B. Common Shared Techniques
References
- Zhang, K.; Sebakhy, K.; Wu, K.; Jing, G.; Chen, N.; Chen, Z.; Hong, A.; Torsæter, O. Future Trends for Tight Oil Exploitation. In Proceedings of the SPE North Africa Technical Conference and Exhibition, Cairo, Egypt, 14 September 2015; p. 14. [Google Scholar]
- Sheng, J.J. Critical Review of Field EOR Projects in Shale and Tight Reservoirs. J. Pet. Sci. Eng. 2017, 159, 654–665. [Google Scholar] [CrossRef]
- Carbonate Petroleum Reservoirs; Roehl, P.O.; Choquette, P.W. (Eds.) Springer: New York, NY, USA, 1985; p. 622. [Google Scholar]
- Ahr, W.M. Geology of Carbonate Reservoirs: The Identification, Description, and Characterization of Hydrocarbon Reservoirs in Carbonate Rocks; Wiley: Hoboken, NJ, USA, 2008; p. xvi, 277. [Google Scholar]
- Burchette, T. Carbonate Rocks and Petroleum Reservoirs: A Geological Perspective From the Industry. Geol. Soc. London Spec. Publ. 2012, 370, 17–37. [Google Scholar] [CrossRef]
- Recommended Practices for Core Analysis. Recommended Practice 40, 2nd ed.; American Petroleum Institute (API): Washington, DC, USA, 1998; p. 220.
- Kazak, E.S.; Kazak, A.V. A Novel Laboratory Method for Reliable Water Content Determination of Shale Reservoir Rocks. J. Pet. Sci. Eng. 2019, 183, 106301. [Google Scholar] [CrossRef]
- Goral, J.; Walton, I.; Andrew, M.; Deo, M. Pore System Characterization of Organic-Rich Shales using Nanoscale-Resolution 3D Imaging. Fuel 2019, 258, 116049. [Google Scholar] [CrossRef]
- Nelson, P.H. Pore-Throat Sizes in Sandstones, Tight Sandstones, and Shales. Geologic Note. AAPG Bull. 2009, 93, 329–340. [Google Scholar] [CrossRef]
- Kazak, A.; Chugunov, S.; Chashkov, A. Integration of Large-Area Scanning-Electron-Microscopy Imaging and Automated Mineralogy/Petrography Data for Selection of Nanoscale Pore-Space Characterization Sites. SPE-191369-PA 2018, 21, 821–836. [Google Scholar] [CrossRef]
- Saidian, M.; Kuila, U.; Godinez, L.; Rivera, S.; Prasad, M. A comparative study of porosity measurement in mudrocks. SEG Tech. Program Expand. Abstr. 2014, 2433–2438. [Google Scholar] [CrossRef]
- Labani, M.; Rezae, R. Petrophysical Evaluation of Gas Shale Reservoirs. In Fundamentals of Gas Shale Reservoirs; Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 117–137. [Google Scholar] [CrossRef]
- Moghadam, A.A.; Chalaturnyk, R. Laboratory Investigation of Shale Permeability. In Proceedings of the SPE/CSUR Unconventional Resources Conference, Calgary, AB, Canada, 20 October 2015; p. 27. [Google Scholar]
- Profice, S.; Hamon, G.; Nicot, B. Low-Permeability Measurements: Insights. Petrophysics 2016, 57, 30–40. [Google Scholar]
- Sander, R.; Pan, Z.; Connell, L.D. Laboratory Measurement of Low Permeability Unconventional Gas Reservoir Rocks: A Review of Experimental Methods. J. Nat. Gas Sci. Eng. 2017, 37, 248–279. [Google Scholar] [CrossRef]
- Jiang, Z.; Mao, Z.; Shi, Y.; Wang, D. Multifractal Characteristics and Classification of Tight Sandstone Reservoirs: A Case Study from the Triassic Yanchang Formation, Ordos Basin, China. Energies 2018, 11, 2242. [Google Scholar] [CrossRef] [Green Version]
- Krakowska, P.; Puskarczyk, E.; Jędrychowski, M.; Habrat, M.; Madejski, P.; Dohnalik, M. Innovative Characterization of Tight Sandstones From Paleozoic Basins in Poland Using X-ray Computed Tomography Supported by Nuclear Magnetic Resonance and Mercury Porosimetry. J. Pet. Sci. Eng. 2018, 166, 389–405. [Google Scholar] [CrossRef]
- Adebayo, A.R.; Babalola, L.; Hussaini, S.R.; Alqubalee, A.; Babu, R.S. Insight into the Pore Characteristics of a Saudi Arabian Tight Gas Sand Reservoir. Energies 2019, 12, 4302. [Google Scholar] [CrossRef] [Green Version]
- Smodej, J.; Lemmens, L.; Reuning, L.; Hiller, T.; Klitzsch, N.; Claes, S.; Kukla, P.A. Nano- to Millimeter Scale Morphology of Connected and Isolated Porosity in the Permo-Triassic Khuff Formation of Oman. Geosciences 2019, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Rezaee, R. Comparative Porosity and Pore Structure Assessment in Shales: Measurement Techniques, Influencing Factors and Implications for Reservoir Characterization. Energies 2019, 12, 2094. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Rylander, E.; Singer, P.M.; Lewis, R.E.; Sinclair, S.M. Integrated Petrophysical Interpretation of Eagle Ford Shale with 1-D and 2-D Nuclear Magnetic Resonance (NMR). In Proceedings of the SPWLA 54th Annual Logging Symposium, New Orleans, LA, USA, 22–26 June 2013. [Google Scholar]
- Gao, H.; Li, H. Determination of Movable Fluid Percentage and Movable Fluid Porosity in Ultra-Low Permeability Sandstone Using Nuclear Magnetic Resonance (NMR) Technique. J. Pet. Sci. Eng. 2015, 133, 258–267. [Google Scholar] [CrossRef]
- Schmitt, M.; Halisch, M.; Fernandes, C.P.; Santos, V.S.S.d.; Weller, A. Fractal Dimension: An Indicator to Characterize the Microstructure of Shale and Tight Gas Sands Considering Distinct Techniques and Phenomena. In Proceedings of the International Symposium of the Society of Core Analysts, Snowmass, CO, USA, 21–26 August 2016; p. 6. [Google Scholar]
- Comisky, J.T.; Santiago, M.; McCollom, B.; Buddhala, A.; Newsham, K.E. Sample Size Effects on the Application of Mercury Injection Capillary Pressure for Determining the Storage Capacity of Tight Gas and Oil Shales. In Proceedings of the Canadian Unconventional Resources Conference, Calgary, AB, Canada, 15–17 November 2011. [Google Scholar]
- Hu, Q.; Gao, X.; Gao, Z.; Ewing, R.; Dultz, S.; Kaufmann, J. Pore Accessibility and Connectivity of Mineral and Kerogen Phases in Shales. In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, CO, USA, 25–27 August 2014. [Google Scholar]
- Goldstein, J.; Newbury, D.; Joy, D. Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed.; Kluwer Academic, Plenum Publishers: New York, NY, USA, 2003. [Google Scholar]
- Camp, W.K. Electron Microscopy of Shale Hydrocarbon Reservoirs. In AAPG Memoir 102; American Association of Petroleum Geologists: Tulsa, OK, USA, 2013. [Google Scholar]
- Gabnasyrov, A.V.; Lyadova, N.A.; Putilov, I.S.; Solovyev, S.I. Domanik Shale Oil: Unlocking Potential. In Proceedings of the SPE Russian Petroleum Technology Conference and Exhibition, Moscow, Russia, 24–26 October 2016. [Google Scholar]
- Bushnev, D.A.; Burdel’naya, N.S. Modeling of Oil Generation by Domanik Carbonaceous Shale. Pet. Chem. 2013, 53, 145–151. [Google Scholar] [CrossRef]
- Fadeeva, N.P.; Kozlova, E.V.; Poludetkina, E.N.; Shardanova, T.A.; Pronina, N.V.; Stupakova, A.V.; Kalmykov, G.A.; Khomyak, A.N. The Hydrocarbon-Generation Potential of the Domanik Rocks in the Volga–Ural Petroliferous Basin. Mosc. Univ. Geol. Bull. 2016, 71, 41–49. [Google Scholar] [CrossRef]
- Stupakova, A.V.; Kalmikov, G.A.; Korobova, N.I.; Fadeeva, N.P.; Gotovskiy, Y.A. The Domanic Formation of the Volga-Ural Basin—Types of the Section, Formation Conditions and Hydrocarbon Potential. Georesursy 2017, 1, 112–124. [Google Scholar] [CrossRef]
- Requejo, A.G.; Sassen, R.; Kennicutt, M.C.; Kvedchuk, I.; McDonald, T.; Denoux, G.; Comet, P.; Brooks, J.M. Geochemistry of Oils from The Northern Timan-Pechora Basin, Russia. Org. Geochem. 1995, 23, 205–222. [Google Scholar] [CrossRef]
- Abrams, M.A.; Apanel, A.M.; Timoshenko, O.M.; Kosenkova, N.N. Oil Families and Their Potential Sources in the Northeastern Timan Pechora Basin, Russia. AAPG Bull. 1999, 83, 553–577. [Google Scholar]
- Prishchepa, O.M.; Averianova, O.Y.; Ilyinskiy, A.A.; Morariu, D. Tight Oil and Gas Formations—Russia’s Hydrocarbons Future Resources; VNIGRI: Saint-Petersburg, Russia, 2014. [Google Scholar]
- Kadyrov, R.; Galiullin, B.; Statsenko, E. The Porous Space Structure of Domanik Shales in the East of Russian Plate. In Proceedings of the International Multidisciplinary Scientific GeoConference-SGEM, Albena, Bulgaria, 2–8 July 2018. 2018; pp. 907–914. [Google Scholar]
- Dunham, R.J.; Ham, W.E. Classification of Carbonate Rocks According to Depositional Texture. In Classification of Carbonate Rocks—A Symposium; American Association of Petroleum Geologists: Tulsa, OK, USA, 1962; Volume 1, pp. 108–121. [Google Scholar]
- McPhee, C.; Reed, J.; Zubizarreta, I. Core Analysis: A Best Practice Guide, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Geologika Manual. PIK-PP Automated Unit for Measurung Porosity and Permeability of Rock Samples:User Manual; Geologika Internal Publishing: Novosibirsk, Russia, 2016. [Google Scholar]
- Abragam, A. The Principles of Nuclear Magnetism; Clarendon Press: Oxford, UK, 1961; p. 599. [Google Scholar]
- Callaghan, P. Principles of Nuclear Magnetic Resonance Microscopy; Clarendon Press: Oxford, UK, 1991. [Google Scholar]
- Bloembergen, N.; Purcell, E.M.; Pound, R.V. Relaxation Effects in Nuclear Magnetic Resonance Absorption. Phys. Rev. 1948, 73, 679–712. [Google Scholar] [CrossRef]
- Straley, C.; Rossini, D.; Vinegar, H.J.; Tutunjan, P.; Morriss, C.E. Core Analysis by Low-Field NMR. Log Anal. 1997, 38, 84–94. [Google Scholar]
- Lenormand, R.; Bauget, F.; Ringot, G. Permeability Measurement on Small Rock Samples. In Proceedings of the International Symposium of the Society of Core Analysts, Halifax, Canada, 4–7 October 2010. [Google Scholar]
- Cydarex. DarcyPress User Manual; Cydarex Internal Publishing: Paris, France, 2017. [Google Scholar]
- Webb, P.A. An Introduction to the Physical Characterization of Materials by Mercury Intrusion Porosimetry with Emphasis on Reduction and Presentation of Experimental Data; Micromeritics Instrument Corp.: Norcross, GA, USA, 2001; p. 23. [Google Scholar]
- Wong, P.-Z. Methods in the Physics of Porous Media; Wong, P.-Z., Ed.; Academic Press: Cambridge, MA, USA, 1999; Volume 35, p. 485. [Google Scholar]
- Micromeritics. AutoPore V Series Operator Manual Nov 2017 (Rev D); Micromeritics Instrument Corporation: Norcross, GA, USA, 2017. [Google Scholar]
- Peters, E.J. Advanced Petrophysics—Volume 2: Dispersion, Interfacial Phenomena/Wettability, Capillarity/Capillary Pressure, Relative Permeability, 1st ed.; Live Oak Book Company: Austin, TX, USA, 2012; Volume 2, p. 276. [Google Scholar]
- Akima, H. A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures. J. Assoc. Comput. Mach. 1970, 17, 589–602. [Google Scholar] [CrossRef]
- Cnudde, V.; Boone, M.N. High-Resolution X-ray Computed Tomography in Geosciences: A Review of the Current Technology and Applications. Earth-Sci. Rev. 2013, 123, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Remeysen, K.; Swennen, R. Application of Microfocus Computed Tomography in Carbonate Reservoir Characterization: Possibilities and Limitations. Mar. Pet. Geol. 2008, 25, 486–499. [Google Scholar] [CrossRef]
- Thermo Fisher Scientific. PerGeos Software Instructions. 2018. Available online: https://www.thermofisher.com/ru/ru/home/industrial/electron-microscopy/electron-microscopy-instruments-workflow-solutions/3d-visualization-analysis-software/pergeos-digital-rock-analysis.html (accessed on 15 June 2018).
- Erdman, N.; Drenzek, N. Integrated Preparation and Imaging Techniques for the Microstructural and Geochemical Characterization of Shale by Scanning Electron Microscopy. In AAPG Memoir. Electron Microscopy of Shale Hydrocarbon Reservoirs; Camp, W., Diaz, E., Wawak, B., Eds.; AAPG: Tulsa, OK, USA, 2013; Volume 102, pp. 7–14. [Google Scholar]
- Mukhametdinova, A.; Shilov, E.; Nachev, V.; Bogdanovich, N.; Cheremisin, A. A Complex of Laboratory Studies of Reservoir Properties of Domanik Formation Rocks. In Proceedings of the Carbonate Reservoirs, Moscow, Russia, 16–18 October 2018. [Google Scholar]
- Karamov, T.; Mukhametdinova, A.; Bogdanovich, N.; Plotnikov, V.; Khakimova, Z. Pore Structure Investigation of Upper Devonian Organic-Rich Shales within the Verkhnekamsk Depression. In Proceedings of the International Multidisciplinary Scientific GeoConference-SGEM, Albena, Bulgaria, 28 June–7 July 2019; pp. 1045–1052. [Google Scholar]
- Mukhametdinova, A.; Karamov, T.; Bogdanovich, N.; Cheremisin, A.; Plotnikov, V. Complex Characterization of Organic-Rich Carbonate Shales Saturation. Int. Multidiscip. Sci. GeoConference-SGEM 2019, 19, 719–726. [Google Scholar] [CrossRef]
- Chugunov, S.; Kazak, A.; Amro, M.; Freese, C.; Akhatov, I. Towards Creation of Ceramic-Based Low Permeability Reference Standards. Materials 2019, 12, 3886. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Liu, D. Comparison of Low-Field NMR and Mercury Intrusion Porosimetry in Characterizing Pore Size Distributions of Coals. Fuel 2012, 95, 152–158. [Google Scholar] [CrossRef]
- Lyu, C.; Ning, Z.; Wang, Q.; Chen, M. Application of NMR T2 to Pore Size Distribution and Movable Fluid Distribution in Tight Sandstones. Energy Fuels 2018, 32, 1395–1405. [Google Scholar] [CrossRef]
- Guidry, K.; Luffel, D.; Curtis, J. Development of Laboratory and Petrophysical Techniques for Evaluating Shale Reservoirs; Gas Technology Institite: Des Plaines, IL, USA, 1996; p. 304. [Google Scholar]
- Simpson, G.A.; Fishman, N.S. Unconventional Tight Oil Reservoirs: A Call For New Standardized Core Analysis Workflows And Research. In Proceedings of the International Symposium of the Society of Core Analysts, St. John’s, NL, Canada, 16–21 August 2015. [Google Scholar]
- Byrne, M.; Patey, I. Core Sample Preparation—An Insight to New Procedures. In Proceedings of the International Symposium of the Society of Core Analysts, Abu Dhabi, UAE, 5–9 October 2004. [Google Scholar]
- Burger, J.; McCarty, D.; Peacher, R.; Fischer, T. Sample Preparation for Unconventional Analysis: A Case Against Solvent Extraction. In Proceedings of the International Symposium of the Society of Core Analysts, Avignon, France, 8–11 September 2014. [Google Scholar]
- Lazar, O.R.; Bohacs, K.M.; Schieber, J.; Macquaker, J.H.; Demko, T.M. Mudstone Primer: Lithofacies Variations, Diagnostic Criteria, and Sedimentologic-Stratigraphic Implications at Lamina to Bedset Scales; SEPM (Society for Sedimentary Geology): Tulsa, OK, USA, 2015. [Google Scholar]
- Teles, A.P.; Lima, I.; Topes, R.T. Rock Porosity Quantification by Dual-Energy X-ray Computed Microtomography. Micron 2016, 83, 72–78. [Google Scholar] [CrossRef]
- Tsuchiyama, A.; Nakano, T.; Uesugi, K.; Uesugi, M.; Takeuchi, A.; Suzuki, Y.; Noguchi, R.; Matsumoto, T.; Matsuno, J.; Nagano, T.; et al. Analytical Dual-Energy Microtomography: A New Method for Obtaining Three-Dimensional Mineral Phase Images and Its Application to Hayabusa Samples. Geochim. Cosmochim. Acta 2013, 116, 5–16. [Google Scholar] [CrossRef]
- Ringrose, P.S.; Martinius, A.W.; Alvestad, J. Multiscale Geological Reservoir Modelling in Practice. Geol. Soc. London Spec. Publ. 2008, 309, 123–134. [Google Scholar] [CrossRef]
- Peters, K.E. Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis. Am. Assoc. Pet. Geol. Bull. 1986, 70, 318–329. [Google Scholar]
Measured Parameter | Conventional Method | Unconventional Method |
---|---|---|
Porosity | Gravimetric or Liquid Saturation (LS) Pulse-Decay (PDP) | Nuclear Magnetic Resonance (NMR) Mercury Injection Capillary Pressure (MICP) Gas adsorption |
Permeability | Steady-State Pulse-Decay (PDP) | Pulse-Decay Permeametry (PDP) Pseudo-Steady-State (PSS) Oscillating Pulse Technique (OPT) Gas Research Institute (GRI) |
Void Space Structure | Thin-sections | Mercury Injection Capillary Pressure (MICP) X-ray Computed Tomography (CT) Scanning Electron Microscopy (SEM) |
Sample ID | DarcyMeter Porosity (%) | PIK-PP Porosity (%) | NMR Porosity (%) | Liquid Porosity (%) | DarcyMeter Permeability (mD) | PIK-PP Permeability (mD) | Darcypress Permeability (mD) |
---|---|---|---|---|---|---|---|
545 | 0.74 | 0.62 | 1.20 | 1.08 | 9.02 × 10−1 | 6.20 × 10−2 | 9.07 × 10−4 |
551 | 1.31 | 0.84 | 2.30 | 1.22 | 2.30 | 1.13 × 10−2 | 4.00 × 10−4 |
696 | 1.23 | 0.22 | 2.10 | 3.85 × 10−3 | 3.00×103 | ||
697 | 1.17 | 0.17 | 1.50 | 2.51 × 10−3 | 2.00 × 10−3 | ||
700 | 2.24 | 0.83 | 1.50 | 7.18 | |||
701 | 1.77 | 1.70 | 5.35 × 10−2 | ||||
703 | 0.92 | 1.80 | 0.83 | 8.48 × 10−3 | 2.36 × 10−3 | ||
705 | 1.30 | 0.35 | 1.10 | 3.61 × 10−3 | 1.00 × 10−3 | ||
707 | 2.63 | 1.10 | 1.97 × 10−2 | ||||
708 | 1.72 | 1.50 | 2.24 × 10−2 | 2.49 × 10−2 | |||
709 | 0.74 | 9.30 × 10−1 | 2.74 × 10−2 | ||||
710 | 0.24 | 1.10 | 1.05 | ||||
711 | 1.35 | 1.40 | 1.04 | 5.19 × 10−2 | 4.32 × 10−3 | ||
712 | 1.04 | 0.57 | 0.91 | 2.19 × 10−2 | 1.20 × 10−2 | ||
714 | 1.92 | 0.73 | 1.70 | 8.48 × 10−1 | 2.73 × 10−1 | ||
717 | 1.38 | 2.30 | 7.56 × 10−3 | ||||
719 | 2.12 | 0.61 | 0.88 | 2.55 | 1.43 | ||
721 | 0.75 | 2.40 | 1.19 | 3.17 × 10−3 | 4.82 × 10−3 | ||
728 | 0.77 | 0.22 | 1.60 | 3.58 × 10−1 | 1.68 × 10−1 | 3.19 × 10−3 | |
740 | 0.30 | 1.60 | 0.81 | 2.01 × 10−3 | 1.65 × 10−2 | ||
747 | 1.73 | 0.33 | 1.20 | 2.40 × 10−2 | 9.00 × 10−3 | ||
748 | 1.60 | 2.90 | 1.29 | 2.38 × 10−2 | 2.52 × 10−3 | ||
752 | 1.31 | 2.87 | 3.20 × 10−2 | ||||
753 | 1.75 | 0.40 | 2.00 | 3.49 × 10−2 | 1.60 × 10−2 | ||
755 | 1.03 | 0.33 | 1.30 | 8.86 × 10−3 | 1.00 × 10−3 | ||
762 | 1.49 | 2.50 | 9.15 × 10−2 | ||||
763 | 2.61 | 3.21 × 10−3 | |||||
766 | 1.10 | 2.20 | 8.46 × 10−2 | ||||
768 | 1.43 | 3.85 × 10−3 | 1.56 × 10−2 | ||||
Min. | 0.24 | 0.17 | 0.88 | 0.81 | 2.01 × 10−3 | 1.00 × 10−3 | 4.00 × 10−4 |
Avg. | 1.37 | 0.49 | 1.67 | 1.06 | 4.69 × 10−1 | 7.06 × 10−1 | 1.74 × 10−2 |
Max. | 2.63 | 0.84 | 2.90 | 1.29 | 2.87 | 7.18 | 9.15 × 10−2 |
Fluid, Technique, Sample Form-Factor & Property | Whole Core | |
---|---|---|
#545 | #551 | |
Gas Whole-Core Porosity (a priori) (%) | 0.74 | 1.31 |
Kerosene NMR Core-Plug Porosity (%) | 1.20 | 2.30 |
Hg MICP Crushed-Rock Porosity (%) | 1.60 | 1.80 |
Gas Volumetric Core-Plug Porosity (%) | 0.62 | 0.84 |
Kerosene Liquid-Staturation Core-Plug Porosity (%) | 1.08 | 1.22 |
Gas PDP Whole-Core Permeability (a priori) (mD) | 9.02 × 10−1 | 2.30 |
Gas PDP Core-Plug Permeability (mD) | 6.20 × 10−2 | 1.13 × 10−2 |
Gas PSS Rock-Chip Permeability (mD) | 9.07 × 10−4 | 4.00 × 10−4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhametdinova, A.; Kazak, A.; Karamov, T.; Bogdanovich, N.; Serkin, M.; Melekhin, S.; Cheremisin, A. Reservoir Properties of Low-Permeable Carbonate Rocks: Experimental Features. Energies 2020, 13, 2233. https://doi.org/10.3390/en13092233
Mukhametdinova A, Kazak A, Karamov T, Bogdanovich N, Serkin M, Melekhin S, Cheremisin A. Reservoir Properties of Low-Permeable Carbonate Rocks: Experimental Features. Energies. 2020; 13(9):2233. https://doi.org/10.3390/en13092233
Chicago/Turabian StyleMukhametdinova, Aliya, Andrey Kazak, Tagir Karamov, Natalia Bogdanovich, Maksim Serkin, Sergey Melekhin, and Alexey Cheremisin. 2020. "Reservoir Properties of Low-Permeable Carbonate Rocks: Experimental Features" Energies 13, no. 9: 2233. https://doi.org/10.3390/en13092233
APA StyleMukhametdinova, A., Kazak, A., Karamov, T., Bogdanovich, N., Serkin, M., Melekhin, S., & Cheremisin, A. (2020). Reservoir Properties of Low-Permeable Carbonate Rocks: Experimental Features. Energies, 13(9), 2233. https://doi.org/10.3390/en13092233