Optimization of the TEGs Configuration (Series/Parallel) in Energy Harvesting Systems with Low-Voltage Thermoelectric Generators Connected to Ultra-Low Voltage DC–DC Converters
Abstract
:1. Introduction
2. Materials and Methods
2.1. The DC–DC Converter
2.2. Thermal System
2.3. Power Measurement Circuit
3. Experimental Results
3.1. Proof-of-Concept Test
3.2. Tests with TEGs
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gould, C. Thermoelectric Energy Harvesting. IntechOpen 2019. [Google Scholar] [CrossRef] [Green Version]
- Enescu, D. Thermoelectric Energy Harvesting: Basic Principles and Applications. IntechOpen 2019. [Google Scholar] [CrossRef] [Green Version]
- Massaguerb, A.; Pujol, T.; Comamala, M.; Massaguera, E. Feasibility study on a vehicular thermoelectric generator coupled to an exhaust gas heater to improve aftertreatment’s efficiency in cold-starts. Appl. Therm. Eng. 2020, 167, 114702. [Google Scholar] [CrossRef]
- Comamala, M.; Cózar, I.R.; Massaguer, A.; Massaguer, E.; Pujol, T. Effects of Design Parameters on Fuel Economy and Output Power in an Automotive Thermoelectric Generator. Energies 2018, 11, 3274. [Google Scholar] [CrossRef] [Green Version]
- Im, J.-P.; Kim, J.H.; Lee, J.W.; Woo, J.Y.; Im, S.Y.; Kim, Y.; Eom, Y.-S.; Choi, W.C.; Kim, J.S.; Moon, S.E. Self-Powered Autonomous Wireless Sensor Node by Using Silicon-Based 3D Thermoelectric Energy Generator for Environmental Monitoring Application. Energies 2020, 13, 674. [Google Scholar] [CrossRef] [Green Version]
- Dias, P.C.; Cadavid, D.; Ortega, S.; Ruiz, A.; França, M.; Morais, F.; Ferreira, E.; Cabot, A. Autonomous soil moisture sensor based on nanostructured thermosensitive resistors powered by an integrated thermoelectric generator. Sens. Actuator A Phys. 2016, 239, 1–7. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Shi, X.; Chen, L.; Dargusch, M.S.; Zou, J.; Chen, Z. Flexible Thermoelectric Materials and Generators: Challenges and Innovations. Adv. Mater. 2019, 31, 1807916. [Google Scholar] [CrossRef]
- Carvalhaes Dias, P.; Morais, F.; França, M.; Ferreira, E.; Cabot, A.; Siqueira Dias, J. Autonomous Multisensor System Powered by a Solar Thermoelectric Energy Harvester with Ultralow-Power Management Circuit. IEEE Trans. Instrum. Meas. 2015, 64, 2918–2925. [Google Scholar] [CrossRef]
- Carvalhaes Dias, P.; Morais, F.; França, M.; Ferreira, E.; Cabot, A.; Siqueira Dias, J. Evaluation of the Thermoelectric Energy Harvesting Potential at Different Latitudes Using Solar Flat Panels Systems with Buried Heat Sink. Appl. Sci. 2018, 8, 2641. [Google Scholar] [CrossRef] [Green Version]
- Ultra-Low Voltage dcdc Boost Converter for Thermal Electrical Generators—EM8900 Data Sheet, EM Microelectronic—Marin. Available online: https://www.emmicroelectronic.com/sites/default/files/products/datasheets/8900-ds.pdf (accessed on 30 April 2020).
- Ultralow Voltage Step-Up Converter and Power Manager—LTC3108 Data Sheet, Analog Devices. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/LTC3108.pdf (accessed on 30 April 2020).
- Montecucco, A.; Siviter, J.; Knox, A. The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel. Appl. Energy 2014, 123, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Coupled Inductors LPR6235 Data-sheet, Document 752R-1. Coilcraft. Available online: https://www.coilcraft.com/lpr6235.cfm (accessed on 30 April 2020).
- Attivissimo, F.; Guarnieri Calò Carducci, C.; Lanzolla, A.M.L.; Spadavecchia, M. An Extensive Unified Thermo-Electric Module Characterization Method. Sensors 2016, 16, 2114. [Google Scholar] [CrossRef]
- De Cerqueira Véras, J.C.; Vieira, D.A.; Melo, E.C.; de Souza, C.P. An automatic thermal cycling based test platform for thermoelectric generator testing. In Proceedings of the 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Pisa, Italy, 11–14 May 2015; pp. 1949–1953. [Google Scholar]
- Attivissimo, F.; Nisio, A.D.; Guarnieri Calò Carducci, C.; Spadavecchia, M.F. Thermal Characterization of Thermoelectric Modules Using Infrared Camera. IEEE Trans. Instrum. Meas. 2017, 6, 305–314. [Google Scholar] [CrossRef]
- Ajiwiguna, T.A.; Ismardi, A.; Kim, S.Y. Measurement System for Thermoelectric Module. In Proceedings of the 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Pisa, Italy, 11–14 May 2014; pp. 1889–1893. [Google Scholar]
- D’Aucelli, G.M.; Giaquinto, N.; Guarnieri Calò Carducci, C.; Spadavecchia, M.; Trotta, A. Uncertainty evaluation of the Unified Method for thermo-electric module characterization. Measurement 2019, 131, 751–763. [Google Scholar] [CrossRef]
- Di Nisio, A.; Di Noia, T.; Guarnieri Calò Carducci, C.; Spadavecchia, M. High Dynamic Range Power Consumption Measurement in Microcontroller-Based Applications. IEEE Trans. Instrum. Meas. 2016, 65, 1968–1976. [Google Scholar] [CrossRef]
- Laird Thermal Systems, Thermal Wizard 1 Peltier Product Specification Tool. Available online: www.lairdthermal.com/thermal-wizard-{peltier-home} (accessed on 30 April 2020).
Test # | Configuration |
---|---|
1 | 1 single TEG |
2 | 2 TEGs in series |
3 | 2 TEGs in parallel, in series with 1 TEG |
4 | 3 TEGs in series |
5 | 2 TEGs in parallel |
6 | 3 TEGs in parallel |
Test # | Onset of Energy Harvesting [C] | Maximum Power Achieved at [C] | Number of TEGs Used |
---|---|---|---|
1 (one TEG) | 1.7 | 2.5 | 1 |
2 (two TEGs in series) | 0.5 | 3.25 | 2 |
3 (two TEGs in parallel in series with one TEG) | 0.18 | 1.8 | 3 |
4 (three TEGs in series) | 0.5 | 2.25 | 3 |
5 (two TEGs in parallel) | 1.3 | 1.8 | 2 |
6 (three TEGs in paralel) | 0.45 | 1.25 | 3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morais, F.; Carvalhaes-Dias, P.; Duarte, L.; Spengler, A.; de Paiva, K.; Martins, T.; Cabot, A.; Siqueira Dias, J. Optimization of the TEGs Configuration (Series/Parallel) in Energy Harvesting Systems with Low-Voltage Thermoelectric Generators Connected to Ultra-Low Voltage DC–DC Converters. Energies 2020, 13, 2297. https://doi.org/10.3390/en13092297
Morais F, Carvalhaes-Dias P, Duarte L, Spengler A, de Paiva K, Martins T, Cabot A, Siqueira Dias J. Optimization of the TEGs Configuration (Series/Parallel) in Energy Harvesting Systems with Low-Voltage Thermoelectric Generators Connected to Ultra-Low Voltage DC–DC Converters. Energies. 2020; 13(9):2297. https://doi.org/10.3390/en13092297
Chicago/Turabian StyleMorais, Flávio, Pedro Carvalhaes-Dias, Luís Duarte, Anderson Spengler, Kleber de Paiva, Thiago Martins, Andreu Cabot, and José Siqueira Dias. 2020. "Optimization of the TEGs Configuration (Series/Parallel) in Energy Harvesting Systems with Low-Voltage Thermoelectric Generators Connected to Ultra-Low Voltage DC–DC Converters" Energies 13, no. 9: 2297. https://doi.org/10.3390/en13092297
APA StyleMorais, F., Carvalhaes-Dias, P., Duarte, L., Spengler, A., de Paiva, K., Martins, T., Cabot, A., & Siqueira Dias, J. (2020). Optimization of the TEGs Configuration (Series/Parallel) in Energy Harvesting Systems with Low-Voltage Thermoelectric Generators Connected to Ultra-Low Voltage DC–DC Converters. Energies, 13(9), 2297. https://doi.org/10.3390/en13092297