A Time Series Sustainability Assessment of a Partial Energy Portfolio Transition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Time Series Prediction of Electricity Generation
ARIMA (1, 0, 0) | 0.7932 | 84,508 |
Standard Error | 0.1547 | 3802 |
2.3. Mechanics of Energy Transition
3. Results
3.1. Development and Comparison of Time Series Forecasting Methods
3.2. Sustainability Assessment of Proposed Electricity Portfolio Transition
3.3. Comparison of Different Fulfillment Strategies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Energy Agency. Total Primary Energy Supply (TPES) by Source, World 1990–2017. Available online: https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energy%20supply&indicator=Total%20primary%20energy%20supply%20(TPES)%20by%20source (accessed on 1 August 2020).
- International Energy Agency. CO2 Emissions by Energy Source, World 1990–2017. Available online: https://www.iea.org/data-and-statistics?country=WORLD&fuel=CO2%20emissions&indicator=CO2%20emissions%20by%20energy%20source (accessed on 1 August 2020).
- National Aeronautics and Space Administration. The Effects of Climate Change. Available online: https://climate.nasa.gov/effects/ (accessed on 1 June 2020).
- Singh, H.V.; Bocca, R.; Gomez, P.; Dahlke, S.; Bazilian, M. The energy transitions index: An analytic framework for understanding the evolving global energy system. Energy Strategy Rev. 2019, 26, 100382. [Google Scholar] [CrossRef]
- Meadowcroft, J. What about the politics? Sustainable development, transition management, and long term energy transitions. Policy Sci. 2009, 42, 323–340. [Google Scholar] [CrossRef]
- Verbong, G.; Geels, F. The ongoing energy transition: Lessons from a socio-technical, multi-level analysis of the Dutch electricity system (1960–2004). Energy Policy 2007, 35, 1025–1037. [Google Scholar] [CrossRef]
- Kern, F.; Smith, A. Restructuring energy systems for sustainability? Energy transition policy in the Netherlands. Energy Policy 2008, 36, 4093–4103. [Google Scholar] [CrossRef]
- Rutherford, J.; Coutard, O. Urban Energy Transitions: Places, Processes and Politics of Socio-technical Change. Urban Stud. 2014, 51, 1353–1377. [Google Scholar] [CrossRef]
- Tagliapietra, S.; Zachmann, G.; Edenhofer, O.; Glachant, J.M.; Linares, P.; Loeschel, A. The European union energy transition: Key priorities for the next five years. Energy Policy 2019, 132, 950–954. [Google Scholar] [CrossRef] [Green Version]
- Hölsgens, R.; Lübke, S.; Hasselkuß, M. Social innovations in the German energy transition: An attempt to use the heuristics of the multi-level perspective of transitions to analyze the diffusion process of social innovations. Energy Sustain. Soc. 2018, 8. [Google Scholar] [CrossRef]
- Schilling, T.; Wyss, R.; Binder, C.R. The resilience of sustainability transitions. Sustainability 2018, 10, 4593. [Google Scholar] [CrossRef] [Green Version]
- Busch, H.; McCormick, K. Local power: Exploring the motivations of mayors and key success factors for local municipalities to go 100% renewable energy. Energy Sustain. Soc. 2014, 4, 5. [Google Scholar] [CrossRef]
- Cowell, R. Sub-national government and pathways to sustainable energy. Environ. Plan. C Politics Space 2017, 35, 1139–1155. [Google Scholar] [CrossRef] [Green Version]
- Parkins, J.; Beckley, T.; Comeau, L.; Stedman, R.; Rollins, C.; Kessler, A. Can Distrust Enhance Public Engagement? Insights from a National Survey on Energy Issues in Canada. Soc. Nat. Resour. 2017, 30, 934–948. [Google Scholar] [CrossRef]
- Sánchez-Durán, R.; Luque, J.; Barbancho, J. Long-term demand forecasting in a scenario of energy transition. Energies 2019, 12, 3095. [Google Scholar] [CrossRef] [Green Version]
- Boroojeni, K.G.; Amini, M.H.; Bahrami, S.; Iyengar, S.S.; Sarwat, A.I.; Karabasoglu, O. A novel multi-time-scale modeling for electric power demand forecasting: From short-term to medium-term horizon. Electr. Power Syst. Res. 2017, 142, 58–73. [Google Scholar] [CrossRef]
- Ryu, S.; Noh, J.; Kim, H. Deep neural network based demand side short term load forecasting. Energies 2017, 10, 3. [Google Scholar] [CrossRef]
- Croonenbroeck, C.; Ambach, D. A selection of time series models for short- to medium-term wind power forecasting. J. Wind Eng. Ind. Aerodyn. 2019, 136, 201–210. [Google Scholar] [CrossRef]
- Le, T.; Vo, M.T.; Vo, B.; Hwang, E.; Rho, S.; Baik, S.W. Improving Electric Energy Consumption Prediction Using CNN and Bi-LSTM. Appl. Sci. 2019, 9, 4237. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, M.; Petrella, L. Multiple season cycles forecasting model: The Italian electricity demand. Stat. Methods Appl. 2015, 24, 671–695. [Google Scholar] [CrossRef]
- Pfenninger, S.; Staffell, I. Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data. Energy 2016, 114, 1251–1265. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Srikumar, V.; Smith, A.D. Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks. Appl. Energy 2018, 212, 372–385. [Google Scholar] [CrossRef]
- de Oliveira, E.M.; Cyrino Oliveira, F.L. Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods. Energy 2018, 144, 776–788. [Google Scholar] [CrossRef]
- Amasyali, K.; El-Gohary, N.M. A review of data-driven building energy consumption prediction studies. Renew. Sustain. Energy Rev. 2018, 81, 1192–1205. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 2nd ed.; OTexts: Melbourne, Australia, 2018; Available online: OTexts.com/fpp2 (accessed on 7 June 2020).
- Alabdulwahab, A.; Abusorrah, A.; Zhang, X.; Shahidehpour, M. Coordination of Interdependent Natural Gas and Electricity Infrastructures for Firming the Variability of Wind Energy in Stochastic Day-Ahead Scheduling. IEEE Trans. Sustain. Energy 2015, 6, 606–615. [Google Scholar] [CrossRef]
- Yang, Z.; Ce, L.; Lian, L. Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods. Appl. Energy 2017, 190, 291–305. [Google Scholar] [CrossRef]
- Amini, M.H.; Kargarian, A.; Karabasoglu, O. ARIMA-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation. Electr. Power Syst. Res. 2016, 140, 378–390. [Google Scholar] [CrossRef]
- Gupta, R.A.; Gupta, N.K. A robust optimization based approach for microgrid operation in deregulated environment. Energy Convers. Manag. 2015, 93, 121–131. [Google Scholar] [CrossRef]
- Gude, V.; Corns, S.; Long, S. Flood Prediction and Uncertainty Estimation Using Deep Learning. Water 2020, 12, 884. [Google Scholar] [CrossRef] [Green Version]
- Weldu, Y.W.; Assefa, G. The search for most cost-effective way of achieving environmental sustainability status in electricity generation: Environmental life cycle cost analysis of energy scenarios. J. Clean. Prod. 2017, 142, 2296–2304. [Google Scholar] [CrossRef]
- Hadian, S.; Madani, K. A system of systems approach to energy sustainability assessment: Are all renewables really green? Ecol. Indic. 2015, 52, 194–206. [Google Scholar] [CrossRef]
- Shue, H. Responsible for what? Carbon producer CO2 contributions and the energy transition. Clim. Chang. 2017, 144, 591–596. [Google Scholar] [CrossRef] [Green Version]
- Energy Information Administration. Electricity Data Browser, Net Generation for All Sectors, Annual (Missouri). Available online: https://www.eia.gov/electricity/data/browser/#/topic/0?agg=2,0,1&fuel=vtvv&geo=000002&sec=g&linechart=ELEC.GEN.ALL-MO-99.A&columnchart=ELEC.GEN.ALL-MO-99.A&map=ELEC.GEN.ALL-MO-99.A&freq=A&ctype=linechart<ype=pin&rtype=s&pin=&rse=0&maptype=0 (accessed on 16 June 2020).
- Prema, V.; Uma Rao, K. Development of statistical time series models for solar power prediction. Renew. Energy 2015, 83, 100–109. [Google Scholar] [CrossRef]
- Ferbar Tratar, L.; Strmčnik, E. The comparison of Holt-Winters method and Multiple regression method: A case study. Energy 2016, 109, 266–276. [Google Scholar] [CrossRef]
- Yuan, C.; Liu, S.; Fang, Z. Comparison of China’s primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model. Energy 2016, 100, 384–390. [Google Scholar] [CrossRef]
- Sen, P.; Roy, M.; Pal, P. Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization. Energy 2016, 116, 1031–1038. [Google Scholar] [CrossRef]
- Hyndman, R.; Athanasopoulos, G.; Bergmeir, C.; Caceres, G.; Chhay, L.; O’Hara-Wild, M.; Petropoulos, F.; Razbash, S.; Wang, E.; Yasmeen, F. Forecast: Forecasting Functions for Time Series and Linear Models. R Package Version 8.12. 2020. Available online: http://pkg.robjhyndman.com/forecast (accessed on 15 August 2020).
- Hyndman, R.J.; Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 2008, 26, 1–22. [Google Scholar]
- Environmental Protection Agency, Climate Change and the Life Cycle of Stuff. Available online: https://19january2017snapshot.epa.gov/climatechange/climate-change-and-life-cycle-stuff_.html (accessed on 15 August 2020).
Energy Type | Carbon Footprint (g CO2/kWh) | Water Footprint (m3/kWh) | Land Footprint (m2/kWh) | Cost (Cents/kWh) |
---|---|---|---|---|
Coal | 8.34 × 102–1.03 × 103 | 5.40 × 10−4–2.09 × 10−3 | 8.30 × 10−5–5.67 × 10−4 | 3.77–5.85 |
Wind: onshore | 6.90–1.45 × 101 | 3.60 × 10−6 | 2.17 × 10−3–2.64 × 10−3 | 4.16–5.72 |
Solar Photovoltaic | 1.25 × 101–1.04 × 102 | 1.51 × 10−4 | 7.04 × 10−4–1.76 × 10−3 | 1.09 × 101–2.34 × 101 |
Model | AICc |
---|---|
ETS (A,N,N) | 375.56 |
ARIMA (1,0,0) | 373.64 |
Electricity Source | Initial Portfolio Share (Xi) |
---|---|
Coal | 72.82% |
Wind | 3.76% |
Solar | 0.52% |
Footprint Simulation Results | ||||
---|---|---|---|---|
10-Year % Change (Min, Max) | Carbon | Water | Land | Cost |
Upper 95% PI | (−1.83, −1.16) | (0.07, −1.46) | (97.82, 42.68) | (24.70, 30.79) |
Model | (−6.12, −5.48) | (−4.31, −5.77) | (89.17, 36.44) | (19.24, 25.07) |
Lower 95% PI | (−11.32, −10.71) | (−9.61, −10.99) | (78.69, 28.88) | (12.64, 18.15) |
Carbon Footprint | Water Footprint | Land Footprint | Cost Footprint | |||||
---|---|---|---|---|---|---|---|---|
Min | Max | Min | Max | Min | Max | Min | Max | |
1 (solar-only) | −6.07% | −4.89% | −2.46% | −5.29% | 46.61% | 28.72% | 29.84% | 42.60% |
0.8 | −6.09% | −5.12% | −3.20% | −5.48% | 64.11% | 31.82% | 25.63% | 35.67% |
0.6 | −6.11% | −5.36% | −3.94% | −5.68% | 80.97% | 34.90% | 21.38% | 28.63% |
0.5 | −6.12% | −5.48% | −4.31% | −5.77% | 89.17% | 36.44% | 19.24% | 25.07% |
0.4 | −6.13% | −5.60% | −4.68% | −5.87% | 97.21% | 37.97% | 17.10% | 21.49% |
0.2 | −6.15% | −5.84% | −5.42% | −6.06% | 112.87% | 41.01% | 12.77% | 14.24% |
0 (wind-only) | −6.16% | −6.07% | −6.16% | −6.25% | 127.98% | 44.03% | 8.41% | 6.87% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hale, J.; Long, S. A Time Series Sustainability Assessment of a Partial Energy Portfolio Transition. Energies 2021, 14, 141. https://doi.org/10.3390/en14010141
Hale J, Long S. A Time Series Sustainability Assessment of a Partial Energy Portfolio Transition. Energies. 2021; 14(1):141. https://doi.org/10.3390/en14010141
Chicago/Turabian StyleHale, Jacob, and Suzanna Long. 2021. "A Time Series Sustainability Assessment of a Partial Energy Portfolio Transition" Energies 14, no. 1: 141. https://doi.org/10.3390/en14010141
APA StyleHale, J., & Long, S. (2021). A Time Series Sustainability Assessment of a Partial Energy Portfolio Transition. Energies, 14(1), 141. https://doi.org/10.3390/en14010141