Sweet Drinks as Fuels for an Alkaline Fuel Cell with Nonprecious Catalysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Characterization and Electrochemical Analysis
2.3.1. Linear Sweep Voltammetry (LSV) Analysis
2.3.2. Polarization Curves and Power Density Tests
3. Results and Discussion
3.1. The COD Values and Sugar Contents of Different Sweet Drinks
3.2. LSV Analysis
3.3. EIS Analysis
3.4. Comparison of Power Densities
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Dong, F.; Liu, P.; Li, Z.; Tong, Y.D.; Feng, M.N.; Hao, M.Q.; Wang, Y.; Zhang, P.P. Direct Electricity Generation from Dissolved Cellulosic Biomass in an Alkaline Fuel Cell. Fuel Cells 2018, 18, 219–226. [Google Scholar] [CrossRef]
- Trygve, B.; Pascal, G.; Emilio, S.C.; Zia, K.; James, H.M. Alkaline fuel cells contemporary advancement and limitations. Fuel 2002, 81, 2151–2155. [Google Scholar]
- Chen, J.; Zhao, C.X.; Zhi, M.M.; Wang, K.; Deng, L.; Xu, G. Alkaline direct oxidation glucose fuel cell system using silver/nickel foams as electrodes. Electrochim. Acta 2012, 66, 133–138. [Google Scholar] [CrossRef]
- Zhou, D.-L.; Feng, J.-J.; Cai, L.-Y.; Fang, Q.-X.; Chen, J.-R.; Wang, A.-J. Facile synthesis of monodisperse porous Cu2O nanospheres on reduced graphene oxide for non-enzymatic amperometric glucose sensing. Electrochim. Acta 2014, 115, 103–108. [Google Scholar] [CrossRef]
- Priya, S.; Berchmans, S. CuO Microspheres Modified Glassy Carbon Electrodes as Sensor Materials and Fuel Cell Catalysts. J. Electrochem. Soc. 2012, 159, F73–F80. [Google Scholar] [CrossRef]
- Basu, D.; Basu, S. A study on direct glucose and fructose alkaline fuel cell. Electrochim. Acta 2010, 55, 5775–5779. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, X.; Wang, X.; Zhang, P.; Shi, J. Peony petal-like 3D graphene-nickel oxide nanocomposite decorated nickel foam as high-performance electrocatalyst for direct glucose alkaline fuel cell. Int. J. Hydrogen Energy 2017, 42, 29863–29873. [Google Scholar] [CrossRef]
- Birkhed, D. Sugar Content, Acidity and Effect on Plaque pH of Fruit Juices, Fruit Drinks, Carbonated Beverages and Sport Drinks. Caries Res. 1984, 18, 120–127. [Google Scholar] [CrossRef]
- Azeredo, D.R.; Alvarenga, V.; Sant’Ana, A.S.; Srur, A.U.S. An overview of microorganisms and factors contributing for the microbial stability of carbonated soft drinks. Food Res. Int. 2016, 82, 136–144. [Google Scholar] [CrossRef]
- Cercado-Quezada, B.; Delia, M.-L.; Bergel, A. Testing various food-industry wastes for electricity production in microbial fuel cell. Bioresour. Technol. 2010, 101, 2748–2754. [Google Scholar] [CrossRef] [Green Version]
- Provera, M.; Han, Z.; Liaw, B.; Su, W.W. Communication—Electrochemical Power Generation from Culled Papaya Fruits. J. Electrochem. Soc. 2016, 163, A1457–A1459. [Google Scholar] [CrossRef] [Green Version]
- Del Campo, A.G.; Canizares, P.; Lobato, J.; Rodrigo, M.; Fernandez-Morales, F.J. Electricity production by integration of acidogenic fermentation of fruit juice wastewater and fuel cells. Int. J. Hydrogen Energy 2012, 37, 9028–9037. [Google Scholar] [CrossRef]
- Irfan, M.; Liu, X.; Li, S.; Khan, I.U.; Li, Y.; Wang, J.; Wang, X.; Du, X.; Wang, G.; Zhang, P. High-performance glucose fuel cell with bimetallic Ni–Co composite anchored on reduced graphene oxide as anode catalyst. Renew. Energy 2020, 155, 1118–1126. [Google Scholar] [CrossRef]
- Irfan, M.; Khan, I.U.; Wang, J.; Li, Y.; Liu, X. 3D porous nanostructured Ni3 NeCo3N as a robust electrode material for glucose fuel cell. RSC Adv. 2020, 10, 6444–6451. [Google Scholar] [CrossRef] [Green Version]
- Okan, T.K.; Melis, M.; Münire, S.A.; Celal, F.G. Micropollutants Removal in MBR Reactors: A comperative study. Presented at the 2nd International Conference on Sustainable Solid Waste Management, Athens, Greece, 12 June 2014. [Google Scholar]
- Liu, X.; Li, Z.; Yang, Y.; Liu, P.; Zhang, P. Electricity generation from a refuelable glucose alkaline fuel cell with a methyl viologen-immobilized activated carbon anode. Electrochim. Acta 2016, 222, 1430–1437. [Google Scholar] [CrossRef]
- Sugano, Y.; Latonen, R.-M.; Akieh-Pirkanniemi, M.; Bobacka, J.; Ivaska, A. Electrocatalytic Oxidation of Cellulose at a Gold Electrode. ChemSusChem 2014, 7, 2240–2247. [Google Scholar] [CrossRef]
- Karadeniz, F.; Ekşi, A. Sugar composition of apple juices. Eur. Food Res. Technol. 2002, 215, 145–148. [Google Scholar] [CrossRef]
- Yao, G.; Zhang, S.; Cao, Y.; Liu, J.; Jun, W.U.; Yuan, J.; Zhang, H.; Xiao, C. Characteristics of Components and Contents of Soluble Sugars in Pear Fruits from Different Species. Sci. Agric. Sin. 2010, 43, 4229–4237. [Google Scholar]
- Li, W.S.; Yang, Y.; Lei, S.; Feng, X.Y.; Zhang, C.C.; Yuan, J.J. Study on the Correlation Relationship Between Sweetness and Sucrose, Reducing Sugars, Soluble Sugars in Fruits. North Hortic. 2012, 36, 58–60. [Google Scholar]
- Deng, T.T.; Liang, D.; Li, H.Z.; Qu, P.F.; Han, J.H. Sugar Content in Commercially Available Beverages in China. Food Nutr. China. 2018, 24, 5–8. [Google Scholar]
- Hashem, K.M.; He, F.J.; Jenner, K.H.; MacGregor, G.A. Cross-sectional survey of the amount of free sugars and calories in carbonated sugar-sweetened beverages on sale in the UK. BMJ Open 2016, 6, e010874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulte, A.G.; Gente, M.; Pieper, K.; Arends, J. The electrical resistance of enamel—Dentine cylinders. Influence of NaCl content in storage solutions. J. Dent. 1998, 26, 113–118. [Google Scholar] [CrossRef]
- Eldarrat, A.H.; High, A.; Kale, G. Influence of sodium chloride content in electrolyte solution on electrochemical impedance measurements of human dentin. Dent. Res. J. 2017, 14, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Friebe, A.; Moritz, W. Influence of electrolyte on electrical properties of thin cellulose acetate membranes. J. Appl. Polym. Sci. 1994, 51, 625–634. [Google Scholar] [CrossRef]
- Harker, F.R.; Forbes, S.K. Ripening and development of chilling injury in persimmon fruit: An electrical impedance study. N. Z. J. Crop. Hortic. Sci. 1997, 25, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Varlan, A.R.; Sansen, W. Nondestructive Electrical Impedance Analysis in Fruit: Normal Ripening and Injuries Characterization. Electro Magnetobiol. 1996, 15, 213–227. [Google Scholar] [CrossRef]
- Liu, P.; Liu, X.; Dong, F.; Lin, Q.; Tong, Y.; Li, Y.; Zhang, P. Electricity generation from banana peels in an alkaline fuel cell with a Cu2O-Cu modified activated carbon cathode. Sci. Total Environ. 2018, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, X.; Wang, Y.; Zhang, P. Electricity generation from macroalgae Enteromorpha prolifera hydrolysates using an alkaline fuel cell. Bioresour. Technol. 2016, 222, 226–231. [Google Scholar] [CrossRef]
- Boulton, J.; Hashem, K.; Jenner, K.; Bromley, H.; Lloyd-Williams, F.; Capewell, S. OP52 How much sugar is hidden in drinks marketed to children? J. Epidemiol. Community Health 2015, 69, A31–A32. [Google Scholar] [CrossRef]
- Luo, H.; Xu, G.; Lu, Y.; Liu, G.; Zhang, R.; Li, X.; Zheng, X.; Yu, M. Electricity generation in a microbial fuel cell using yogurt wastewater under alkaline conditions. RSC Adv. 2017, 7, 32826–32832. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Li, H.; Li, L.; Su, X.; Lu, Y.; Zuo, W.; Zhang, J. In-situ integration of microbial fuel cell with hollow-fiber membrane bioreactor for wastewater treatment and membrane fouling mitigation. Biosens. Bioelectron. 2015, 64, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Jaime, H.R.; David, O.D.; Diana, M.; Juvenal, R.R.; Juan, M.; Andres, D.; Diana, D.; Rosario, G. and Hilda, E. A paper-based microfluidic fuel cell using soft drinks as a renewable energy source. Energies 2020, 13, 2443. [Google Scholar]
- Liu, W.; Gong, Y.; Wu, W.; Yang, W.; Liu, C.; Deng, Y.; Chao, Z.-S. Efficient Biomass Fuel Cell Powered by Sugar with Photo- and Thermal-Catalysis by Solar Irradiation. ChemSusChem 2018, 11, 2229–2238. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.; Xu, X.; Dong, S. A single-walled carbon nanohorn-based miniature glucose/air biofuel cell for harvesting energy from soft drinks. Energy Environ. Sci. 2011, 4, 1358–1363. [Google Scholar] [CrossRef]
- Li, L.; Scott, K.; Yu, E.H. A direct glucose alkaline fuel cell using MnO2–carbon nanocomposite supported gold catalyst for anode glucose oxidation. J. Power Source 2013, 221, 1–5. [Google Scholar] [CrossRef]
- Pasta, M.; La Mantia, F.; Ruffo, R.; Peri, F.; Della Pina, C.; Mari, C. Optimizing operating conditions and electrochemical characterization of glucose–gluconate alkaline fuel cells. J. Power Source 2011, 196, 1273–1278. [Google Scholar] [CrossRef]
- Vaze, A.; Hussain, N.; Tang, C.; Leech, D.; Rusling, J. Biocatalytic anode for glucose oxidation utilizing carbon nanotubes for direct electron transfer with glucose oxidase. Electrochem. Commun. 2009, 11, 2004–2007. [Google Scholar] [CrossRef] [Green Version]
- Ross, P.N. Deactivation and poisoning of fuel cell catalysts, revision. In Proceedings of the International Symposium on Catalyst Deactivation and Poisoning, Berkeley, CA, USA, 19 June 1985. [Google Scholar]
Drinks | Sugar Concentration | |||
---|---|---|---|---|
Fructose | Glucose | Sucrose | Total | |
Fruit juices | 4.4% | 3.0% | 1.9% | 9.3% |
Fruit drinks | 1.5% | 1.4% | 6.9% | 9.8% |
Carbonated beverages | 1.1% | 1.0% | 7.4% | 9.5% |
Sport drinks | 1.0% | 2.1% | 1.3% | 4.4% |
Characteristics | Juice Drinks | Carbonate Beverages | ||||
---|---|---|---|---|---|---|
Orange | Pear | Apple | Coca | Sprite | Pepsi | |
COD (g/L) | 99.95 | 175.30 | 154.10 | 145.30 | 144.98 | 141.15 |
Total sugar content (g/100 mL) | 8.90 | 10.20 | 12.30 | 10.60 | 11.00 | 11.20 |
Drink Types | Juice Drinks | Carbonate Beverages | ||||
---|---|---|---|---|---|---|
Orange | Pear | Apple | Coca | Sprite | Pepsi | |
Maximum current (mA/m2) | 14.409 | 15.923 | 19.943 | 15.895 | 19.447 | 21.118 |
Open circuit potential (V) | −0.646 | −0.710 | −0.762 | −0.750 | −0.698 | −0.776 |
Classification | Resistance | ||||
---|---|---|---|---|---|
Rs(Ω) | Rct(Ω) | Rd(Ω) | Rt(Ω) | ||
Juice drinks | Orange | 0.65 | 0.52 | 1.82 | 2.99 |
Pear | 0.53 | 0.28 | 1.59 | 2.40 | |
Apple | 0.45 | 0.20 | 0.98 | 1.18 | |
Carbonate beverages | Coca | 0.64 | 0.25 | 1.27 | 2.16 |
Sprite | 0.53 | 0.13 | 0.35 | 1.01 | |
Pepsi | 0.60 | 0.10 | 0.87 | 1.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhang, X.; Li, Y.; Liu, P.; Chen, X.; Zhang, P.; Wang, Z.; Liu, X. Sweet Drinks as Fuels for an Alkaline Fuel Cell with Nonprecious Catalysts. Energies 2021, 14, 206. https://doi.org/10.3390/en14010206
Wang J, Zhang X, Li Y, Liu P, Chen X, Zhang P, Wang Z, Liu X. Sweet Drinks as Fuels for an Alkaline Fuel Cell with Nonprecious Catalysts. Energies. 2021; 14(1):206. https://doi.org/10.3390/en14010206
Chicago/Turabian StyleWang, Jiao, Xiaohui Zhang, Yang Li, Peng Liu, Xiaochen Chen, Pingping Zhang, Zhiyun Wang, and Xianhua Liu. 2021. "Sweet Drinks as Fuels for an Alkaline Fuel Cell with Nonprecious Catalysts" Energies 14, no. 1: 206. https://doi.org/10.3390/en14010206
APA StyleWang, J., Zhang, X., Li, Y., Liu, P., Chen, X., Zhang, P., Wang, Z., & Liu, X. (2021). Sweet Drinks as Fuels for an Alkaline Fuel Cell with Nonprecious Catalysts. Energies, 14(1), 206. https://doi.org/10.3390/en14010206