A Supervisory Control Strategy for Improving Energy Efficiency of Artificial Lighting Systems in Greenhouses
Abstract
:1. Introduction
1.1. Energy Consumption of Greenhouses
1.2. Artificial Lighting System for Commercial Greenhouses
1.3. Energy Flexibility of Greenhouses
1.4. Goals and Framework of the Paper
2. Methodology
2.1. Plants Interaction with Natural and Artificial Light
2.2. The Control Goal
2.3. The Controller Constraints
- The maximum number of times that the controller can switch-on and off the artificial lighting system.
- The minimum duration of artificial lighting periods (e.g., I cannot switch on/off the artificial lights every , but they must remain in a constant state for at least ).
- The minimum number of dark hours (i.e., plants need at least some dark hours to assimilate photosynthesis products [48]).
- The hours when artificial lights must be a-priori switched off for reasons external to the primary production process.
2.4. The Existing Control Strategy
2.5. The Proposed Supervisory Predictive Control Strategy
- the measurement time-step that is the time interval between two measures monitored by sensors;
- the control time-step representing the time interval in which the controller is iterated to re-define a new set-point trajectory; and
- the prediction horizon and the control horizon representing the number of future time-steps evaluated in an optimization function; in the present formulation, the two horizons coincide.
3. Material and Methods
3.1. Hardware Configuration
3.2. Software Configuration
- Connection with external elements (MQTT broker for sensors, weather-forecast, and price forecast.)
- PostgreSQL database to record the data.
- Python functions to process the data and define the control logic.
- HTML-based GUI to visualize the data and insert user data, goals, and constraints.
3.3. Assumptions, Goals, and Constraint Definitions
4. Results
4.1. Outcomes of the Monitoring Campaign
4.2. Year-Long Simulations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RES | Renewable Energy Sources |
DSM | Demand Side Management |
DR | Demand Response |
PV | PhotoVoltaic |
AI | Artificial Intelligence |
PPFD | Photosynthetic Photon Flux Density |
TMY | Typical Meteorological Year |
PAR | Photosynthetic Active Radiation |
ADC | Analog signal to Digital signal Converter |
MQTT | Message Queue Telemetry Transport |
BACS | Building Automation and Control System |
DLI | DayLight Integral |
RBC | Rule Based Controller |
RDBMS | Relational DataBase Management System |
GUI | Graphical User Interface |
HVAC | Heating Ventilating and Air Conditioning |
MPC | Model Predictive Control |
LED | Light Emitting Diode |
ALI | Artificial Lighting Integral |
IoT | Internet of Things |
ICT | Information and Communication Technologies |
EPW | Energy Plus Weather file |
KPI | Key Performance Indicator |
MAPE | Mean Absolute Percentage Error |
LPWAN | Low Power Wide Area Network |
RMSE | Root Mean Square Error |
IWEC | International Weather for Energy Calculations |
References
- Golzar, F.; Heeren, N.; Hellweg, S.; Roshandel, R. A comparative study on the environmental impact of greenhouses: A probabilistic approach. Sci. Total Environ. 2019, 675, 560–569. [Google Scholar] [CrossRef]
- Dias, G.M.; Ayer, N.W.; Khosla, S.; Van Acker, R.; Young, S.B.; Whitney, S.; Hendricks, P. Life cycle perspectives on the sustainability of Ontario greenhouse tomato production: Benchmarking and improvement opportunities. J. Clean. Prod. 2017, 140, 831–839. [Google Scholar] [CrossRef]
- Golzar, F.; Heeren, N.; Hellweg, S.; Roshandel, R. A novel integrated framework to evaluate greenhouse energy demand and crop yield production. Renew. Sustain. Energy Rev. 2018, 96, 487–501. [Google Scholar] [CrossRef]
- Fabrizio, E. Energy reduction measures in agricultural greenhouses heating: Envelope, systems and solar energy collection. Energy Build. 2012, 53, 57–63. [Google Scholar] [CrossRef]
- Critten, D.; Bailey, B. A review of greenhouse engineering developments during the 1990s. Agric. For. Meteorol. 2002, 112, 1–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Gauthier, L.; De Halleux, D.; Dansereau, B.; Gosselin, A. Effect of covering materials on energy consumption and greenhouse microclimate. Agric. For. Meteorol. 1996, 82, 227–244. [Google Scholar] [CrossRef]
- Rasheed, A.; Na, W.H.; Lee, J.W.; Kim, H.T.; Lee, H.W. Optimization of Greenhouse Thermal Screens For Maximized Energy Conservation. Energies 2019, 12, 3592. [Google Scholar] [CrossRef] [Green Version]
- Rabbi, B.; Chen, Z.H.; Sethuvenkatraman, S. Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods. Energies 2019, 12, 2737. [Google Scholar] [CrossRef] [Green Version]
- Benli, H.; Durmuş, A. Evaluation of ground-source heat pump combined latent heat storage system performance in greenhouse heating. Energy Build. 2009, 41, 220–228. [Google Scholar] [CrossRef]
- Yano, A.; Cossu, M. Energy sustainable greenhouse crop cultivation using photovoltaic technologies. Renew. Sustain. Energy Rev. 2019, 109, 116–137. [Google Scholar] [CrossRef]
- Serale, G.; Fiorentini, M.; Capozzoli, A.; Bernardini, D.; Bemporad, A. Model predictive control (MPC) For enhancing building and HVAC system energy efficiency: Problem formulation, applications and opportunities. Energies 2018, 11, 631. [Google Scholar] [CrossRef] [Green Version]
- Serale, G.; Fiorentini, M.; Capozzoli, A.; Cooper, P.; Perino, M. Formulation of a model predictive control algorithm to enhance the performance of a latent heat solar thermal system. Energy Convers. Manag. 2018, 173, 438–449. [Google Scholar] [CrossRef]
- Fiorentini, M.; Serale, G.; Kokogiannakis, G.; Capozzoli, A.; Cooper, P. Development and evaluation of a comfort-oriented control strategy for thermal management of mixed-mode ventilated buildings. Energy Build. 2019, 202, 109347. [Google Scholar] [CrossRef]
- Serale, G.; Fiorentini, M.; Noussan, M. Development of algorithms For building energy efficiency. In Start-Up Creation, 2nd ed.; Pacheco-Torgal, F., Rasmussen, E., Granqvist, C.G., Ivanov, V., Kaklauskas, A., Makonin, S., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Cambridge, UK, 2020; pp. 267–290. [Google Scholar] [CrossRef]
- Kochhar, A.; Kumar, N. Wireless sensor networks For greenhouses: An end-to-end review. Comput. Electron. Agric. 2019, 163, 104877. [Google Scholar] [CrossRef]
- Van Straten, G.; van Willigenburg, G.; van Henten, E.; van Ooteghem, R. Optimal Control of Greenhouse Cultivation; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Van Henten, E. Greenhouse Climate Management: An Optimal Control Approach. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 1994. [Google Scholar]
- Van Henten, E. Sensitivity analysis of an optimal control problem in greenhouse climate management. Biosyst. Eng. 2003, 85, 355–364. [Google Scholar] [CrossRef]
- Shen, Y.; Wei, R.; Xu, L. Energy consumption prediction of a greenhouse and optimization of daily average temperature. Energies 2018, 11, 65. [Google Scholar] [CrossRef] [Green Version]
- Maher, A.; Kamel, E.; Enrico, F.; Atif, I.; Abdelkader, M. An intelligent system For the climate control and energy savings in agricultural greenhouses. Energy Effic. 2016, 9, 1241–1255. [Google Scholar] [CrossRef]
- Revathi, S.; Sivakumaran, N. Fuzzy based temperature control of greenhouse. IFAC Pap. 2016, 49, 549–554. [Google Scholar] [CrossRef]
- Tang, Y.; Jia, M.; Mei, Y.; Yu, Y.; Zhang, J.; Tang, R.; Song, K. 3D intelligent supplement light illumination using hybrid sunlight and LED For greenhouse plants. Optik 2019, 183, 367–374. [Google Scholar] [CrossRef]
- Ma, D.; Carpenter, N.; Maki, H.; Rehman, T.U.; Tuinstra, M.R.; Jin, J. Greenhouse environment modeling and simulation For microclimate control. Comput. Electron. Agric. 2019, 162, 134–142. [Google Scholar] [CrossRef]
- Chen, L.; Du, S.; He, Y.; Liang, M.; Xu, D. Robust model predictive control For greenhouse temperature based on particle swarm optimization. Inf. Process. Agric. 2018, 5, 329–338. [Google Scholar] [CrossRef]
- Blasco, X.; Martínez, M.; Herrero, J.M.; Ramos, C.; Sanchis, J. Model-based predictive control of greenhouse climate For reducing energy and water consumption. Comput. Electron. Agric. 2007, 55, 49–70. [Google Scholar] [CrossRef]
- Xu, D.; Du, S.; van Willigenburg, L.G. Optimal control of Chinese solar greenhouse cultivation. Biosyst. Eng. 2018, 171, 205–219. [Google Scholar] [CrossRef]
- Xu, D.; Du, S.; van Willigenburg, G. Adaptive two time-scale receding horizon optimal control for greenhouse lettuce cultivation. Comput. Electron. Agric. 2018, 146, 93–103. [Google Scholar] [CrossRef]
- Xu, D.; Du, S.; van Willigenburg, G. Double closed-loop optimal control of greenhouse cultivation. Control Eng. Pract. 2019, 85, 90–99. [Google Scholar] [CrossRef]
- Bersani, C.; Ouammi, A.; Sacile, R.; Zero, E. Model Predictive Control of Smart Greenhouses as the Path towards Near Zero Energy Consumption. Energies 2020, 13, 3647. [Google Scholar] [CrossRef]
- Körner, O.; Heuvelink, E.; Niu, Q. Quantification of temperature, CO2, and light effects on crop photosynthesis as a basis For model-based greenhouse climate control. J. Hortic. Sci. Biotechnol. 2009, 84, 233–239. [Google Scholar] [CrossRef]
- Heuvelink, E.; Challa, H. Dynamic optimization of artificial lighting in greenhouses. Int. Symp. Growth Yield Control Veg. Prod. 1989, 260, 401–412. [Google Scholar] [CrossRef] [Green Version]
- van Iersel, M.W. Optimizing LED lighting in controlled environment agriculture. In Light Emitting Diodes for Agriculture; Springer: Singapore, 2017; pp. 59–80. [Google Scholar]
- Paucek, I.; Pennisi, G.; Pistillo, A.; Appolloni, E.; Crepaldi, A.; Calegari, B.; Spinelli, F.; Cellini, A.; Gabarrell, X.; Orsini, F.; et al. Supplementary LED interlighting improves yield and precocity of greenhouse tomatoes in the Mediterranean. Agronomy 2020, 10, 1002. [Google Scholar] [CrossRef]
- Singh, D.; Basu, C.; Meinhardt-Wollweber, M.; Roth, B. LEDs For energy efficient greenhouse lighting. Renew. Sustain. Energy Rev. 2015, 49, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Berkovich, Y.A.; Konovalova, I.; Smolyanina, S.; Erokhin, A.; Avercheva, O.; Bassarskaya, E.; Kochetova, G.; Zhigalova, T.; Yakovleva, O.; Tarakanov, I. LED crop illumination inside space greenhouses. Reach 2017, 6, 11–24. [Google Scholar] [CrossRef]
- Nelson, J.A.; Bugbee, B. Economic Analysis of Greenhouse Lighting: Light Emitting Diodes vs. High Intensity Discharge Fixtures. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordehi, A.R. Optimisation of demand response in electric power systems, a review. Renew. Sustain. Energy Rev. 2019, 103, 308–319. [Google Scholar] [CrossRef]
- Dranka, G.G.; Ferreira, P. Review and assessment of the different categories of demand response potentials. Energy 2019, 179, 280–294. [Google Scholar] [CrossRef]
- Yan, X.; Ozturk, Y.; Hu, Z.; Song, Y. A review on price-driven residential demand response. Renew. Sustain. Energy Rev. 2018, 96, 411–419. [Google Scholar] [CrossRef]
- Lu, X.; Zhou, K.; Zhang, X.; Yang, S. A systematic review of supply and demand side optimal load scheduling in a smart grid environment. J. Clean. Prod. 2018, 203, 757–768. [Google Scholar] [CrossRef]
- Cui, H.; Zhou, K. Industrial power load scheduling considering demand response. J. Clean. Prod. 2018, 204, 447–460. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, P.; Gu, J.; Schmidt, F.; Li, W. Measures to improve energy demand flexibility in buildings For demand response (DR): A review. Energy Build. 2018, 177, 125–139. [Google Scholar] [CrossRef]
- Tsay, C.; Kumar, A.; Flores-Cerrillo, J.; Baldea, M. Optimal demand response scheduling of an industrial air separation unit using data-driven dynamic models. Comput. Chem. Eng. 2019, 126, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Jung, W.; Jazizadeh, F. Human-in-the-loop HVAC operations: A quantitative review on occupancy, comfort, and energy-efficiency dimensions. Appl. Energy 2019, 239, 1471–1508. [Google Scholar] [CrossRef]
- Lv, C.; Yu, H.; Li, P.; Wang, C.; Xu, X.; Li, S.; Wu, J. Model predictive control based robust scheduling of community integrated energy system with operational flexibility. Appl. Energy 2019, 243, 250–265. [Google Scholar] [CrossRef]
- De Zwart, H. Analyzing Energy-Saving Options in Greenhouse Cultivation Using a Simulation Model. Ph.D. Dissertation, University of Wageningen, Wageningen, The Netherlands, 1996. [Google Scholar]
- Gijzen, H.; Heuvelink, E.; Challa, H.; Marcelis, L.; Dayan, E.; Cohen, S.; Fuchs, M. Hortisim: A model For greenhouse crops and greenhouse climate. Model. Plant Growth Environ. Control Farm Manag. Prot. Cultiv. 1997, 456, 441–450. [Google Scholar] [CrossRef] [Green Version]
- Körner, O.; Challa, H.; van Ooteghem, R.J. Modelling temperature effects on crop photosynthesis at high radiation in a solar greenhouse. Acta Hortic. 2003, 137–144. [Google Scholar] [CrossRef]
- van Ittersum, M.K.; Leffelaar, P.A.; van Keulen, H.; Kropff, M.J.; Bastiaans, L.; Goudriaan, J. On approaches and applications of the Wageningen crop models. Eur. J. Agron. 2003, 18, 201–234. [Google Scholar] [CrossRef]
- Faust, J.E. First Research Report. Light management in greenhouses. Available online: www.specmeters.com/assets/1/7/A051.pdf (accessed on 1 December 2020).
- Froiz-Míguez, I.; Fernández-Caramés, T.; Fraga-Lamas, P.; Castedo, L. Design, implementation and practical evaluation of an IoT home automation system For fog computing applications based on MQTT and ZigBee-WiFi sensor nodes. Sensors 2018, 18, 2660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day Ahead Market Forecast. 2019. Available online: www.mercatoelettrico.org (accessed on 1 December 2020).
- Weather Forecast Single Access Point. 2019. Available online: www.lrcservizi.it (accessed on 30 July 2018).
- Poruschi, L.; Ambrey, C.L.; Smart, J.C. Revisiting feed-in tariffs in Australia: A review. Renew. Sustain. Energy Rev. 2018, 82, 260–270. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serale, G.; Gnoli, L.; Giraudo, E.; Fabrizio, E. A Supervisory Control Strategy for Improving Energy Efficiency of Artificial Lighting Systems in Greenhouses. Energies 2021, 14, 202. https://doi.org/10.3390/en14010202
Serale G, Gnoli L, Giraudo E, Fabrizio E. A Supervisory Control Strategy for Improving Energy Efficiency of Artificial Lighting Systems in Greenhouses. Energies. 2021; 14(1):202. https://doi.org/10.3390/en14010202
Chicago/Turabian StyleSerale, Gianluca, Luca Gnoli, Emanuele Giraudo, and Enrico Fabrizio. 2021. "A Supervisory Control Strategy for Improving Energy Efficiency of Artificial Lighting Systems in Greenhouses" Energies 14, no. 1: 202. https://doi.org/10.3390/en14010202
APA StyleSerale, G., Gnoli, L., Giraudo, E., & Fabrizio, E. (2021). A Supervisory Control Strategy for Improving Energy Efficiency of Artificial Lighting Systems in Greenhouses. Energies, 14(1), 202. https://doi.org/10.3390/en14010202