The Applicability of Coanda Effect Hysteresis for Designing Unsteady Ventilation Systems
Abstract
:1. Introduction
1.1. Energy Efficiency of Ventilation Systems in the Residential Sector
1.2. Mechanical Ventilation
1.3. Unsteady Ventilation
- -
- “BaOpt” (www.climotion.com).
- -
- TwinXChange and CrossXChange (www.howatherm.de).
- -
- FVPpulse (www.ltg.de).
- -
- Systems with time-varying flow rates [81].
- -
- -
- Air supply devices that stimulate natural wind [87].
- -
- Air handling unit for temperature and velocity control [88].
1.4. Coanda Effect Hysteresis in Ventilation
2. Materials and Methods
- -
- Case 1: MN—only the MN was used;
- -
- Case 2: MN+AN INJ—both nozzles were used, where the AN was an injection (INJ) nozzle;
- -
- Case 3: MN+AN SUC—both nozzles were used, where the AN was a suction (SUC) nozzle.
3. Results
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Symbols
width of the main nozzle, [m]; | |
width of the auxiliary nozzle, [m]; | |
height of the main nozzle, [m]; | |
height of the auxiliary nozzle, [m]; | |
length of the flat plate, [m]; | |
Reynolds number, [-] | |
Reynolds number for jet attachment, [-] | |
Reynolds number for jet separation, [-] | |
turbulence intensity, [%]; | |
average velocity at measuring points in the air duct, positioned parallel to the jet axis, [m/s]; | |
maximum average velocity at measuring points in the air duct, [m/s]; | |
effective turbulence (standard deviation), [m/s]; | |
average exit velocity in the main nozzle, [m/s]; | |
plate deflection angle, [°]; | |
critical angle of jet attachment, [°]; | |
critical angle of jet separation, [°]; | |
hysteresis region, [°]; | |
kinematic viscosity of fluid, [m2/s]. |
References
- Mesenhöller, E.; Vennemann, P.; Hussong, J. Unsteady room ventilation–A review. Build. Environ. 2020, 169, 106595. [Google Scholar] [CrossRef]
- EEC. Energy in Figures. Statistical Pocketbook 2020; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Directive, E.E. Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32. Off. J. 2012, 315, 1–56. [Google Scholar]
- EU Building Stock Observatory. Available online: https://ec.europa.eu/energy/eu-buildings-factsheets_en (accessed on 15 October 2020).
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Vakiloroaya, V.; Samali, B.; Fakhar, A.; Pishghadam, K. A review of different strategies for HVAC energy saving. Energy Convers. Manag. 2014, 77, 738–754. [Google Scholar] [CrossRef]
- Sherman, M.H.; Matson, N. Residential ventilation and energy characteristics. ASHRAE Trans. 1997, 103, 717–730. [Google Scholar]
- Perez-Lombard, L.; Ortiz, J.; Maestre, I.R. The map of energy flow in HVAC systems. Appl. Energy 2011, 88, 5020–5031. [Google Scholar] [CrossRef]
- SeppȨnen, O. Ventilation strategies for good indoor air quality and energy efficiency. Int. J. Vent. 2008, 6, 297–306. [Google Scholar]
- Laverge, J.; Janssens, A. Heat recovery ventilation operation traded off against natural and simple exhaust ventilation in Europe by primary energy factor, carbon dioxide emission, household consumer price and exergy. Energy Build. 2012, 50, 315–323. [Google Scholar] [CrossRef]
- Litiu, A. Ventilation system types in some EU countries. REHVA J. 2012, 1, 18–23. [Google Scholar]
- Suszanowicz, D. Optimisation of heat loss through ventilation for residential buildings. Atmosphere 2018, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- Laverge, J.; Van Den Bossche, N.; Heijmans, N.; Janssens, A. Energy saving potential and repercussions on indoor air quality of demand controlled residential ventilation strategies. Build. Environ. 2011, 46, 1497–1503. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Haghighat, F. Optimization of ventilation system design and operation in office environment, Part I: Methodology. Build. Environ. 2009, 44, 651–656. [Google Scholar] [CrossRef]
- Ben-David, T.; Rackes, A.; Lo, L.J.; Wen, J.; Waring, M.S. Optimizing ventilation: Theoretical study on increasing rates in offices to maximize occupant productivity with constrained additional energy use. Build. Environ. 2019, 166, 106314. [Google Scholar] [CrossRef]
- Li, K.; Xue, W.; Xu, C.; Su, H. Optimization of ventilation system operation in office environment using POD model reduction and genetic algorithm. Energy Build. 2013, 67, 34–43. [Google Scholar] [CrossRef]
- Guo, R.; Heiselberg, P.; Hu, Y.; Zhang, C.; Vasilevskis, S. Optimization of night ventilation performance in office buildings in a cold climate. Energy Build. 2020, 225, 110319. [Google Scholar] [CrossRef]
- Guo, W.; Liu, X.; Yuan, X. Study on natural ventilation design optimization based on CFD simulation for green buildings. Procedia Eng. 2015, 121, 573–581. [Google Scholar] [CrossRef] [Green Version]
- Ecim-Djuric, O.; Topisirovic, G. Energy efficiency optimization of combined ventilation systems in livestock buildings. Energy Build. 2010, 42, 1165–1171. [Google Scholar] [CrossRef]
- Loomans, M.G.L.C.; Molenaar, P.C.A.; Kort, H.S.M.; Joosten, P.H. Energy demand reduction in pharmaceutical cleanrooms through optimization of ventilation. Energy Build. 2019, 202, 109346. [Google Scholar] [CrossRef]
- Stavrakakis, G.M.; Zervas, P.L.; Sarimveis, H.; Markatos, N.C. Optimization of window-openings design for thermal comfort in naturally ventilated buildings. Appl. Math. Model. 2012, 36, 193–211. [Google Scholar] [CrossRef]
- Serageldin, A.A.; Abdelrahman, A.K.; Ookawara, S. Parametric study and optimization of a solar chimney passive ventilation system coupled with an earth-to-air heat exchanger. Sustain. Energy Technol. Assess. 2018, 30, 263–278. [Google Scholar] [CrossRef]
- Yuan, F.; Dong, W.; Shen, G.; Li, Y.; Liu, W. Energy flow-based method for analysis and optimization of evaporative cooling and ventilation systems. Int. J. Heat Mass Transf. 2020, 146, 118865. [Google Scholar] [CrossRef]
- Baglivo, C.; D’Agostino, D.; Congedo, P.M. Design of a ventilation system coupled with a horizontal air-ground heat exchanger (HAGHE) for a residential building in a warm climate. Energies 2018, 11, 2122. [Google Scholar] [CrossRef] [Green Version]
- COMMISSION RECOMMENDATION (EU) 2016/1318 of 29 July 2016 on Guidelines for the Promotion of Nearly Zero-Energy Buildings and Best Practices to Ensure that, by 2020, all New Buildings are Nearly Zero-Energy Buildings; Publications Office of the European Union: Luxembourg, 2016.
- Kurnitski, J.; Buso, T.; Corgnati, S.P.; Derjanecz, A.; Litiu, A. nZEB definitions in Europe. REHVA Eur. HVAC J. 2014, 51, 6–9. [Google Scholar]
- Guillén-Lambea, S.; Rodríguez-Soria, B.; Marín, J.M. Review of European ventilation strategies to meet the cooling and heating demands of nearly zero energy buildings (nZEB)/Passivhaus. Comparison with the USA. Renew. Sustain. Energy Rev. 2016, 62, 561–574. [Google Scholar] [CrossRef]
- Toleikyte, A.; Kranzl, L.; Bointner, R.; Bean, F.; Cipriano, J.; De Groote, M.; Hermelink, A.; Klinski, M.; Kretschmer, D.; Lapilonne, B.; et al. ZEBRA 2020-Nearly Zero-Energy Building Strategy 2020; Strategies for a nearly Zero-Energy Building market transition in the European Union; ZEBRA: Lincoln County, IL, USA, 2020. [Google Scholar]
- Congedo, P.M.; Lorusso, C.; Baglivo, C.; Milanese, M.; Raimondo, L. Experimental validation of horizontal air-ground heat exchangers (HAGHE) for ventilation systems. Geothermics 2019, 80, 78–85. [Google Scholar] [CrossRef]
- Skotnicka-Siepsiak, A. Operation of a Tube GAHE in Northeastern Poland in Spring and Summer—A Comparison of Real-World Data with Mathematically Modeled Data. Energies 2020, 13, 1778. [Google Scholar] [CrossRef] [Green Version]
- Sha, H.; Qi, D. Investigation of mechanical ventilation for cooling in high-rise buildings. Energy Build. 2020, 228, 110440. [Google Scholar] [CrossRef]
- Sundell, J. On the history of indoor air quality and health. Indoor Air 2004, 14, 51–58. [Google Scholar] [CrossRef]
- Santos, H.R.; Leal, V.M. Energy vs. ventilation rate in buildings: A comprehensive scenario-based assessment in the European context. Energy Build. 2012, 54, 111–121. [Google Scholar] [CrossRef]
- Kephalopoulos, S.; Geiss, O.; Barrero-Moreno, J.; D’Agostino, D.; Paci, D. Promoting Healthy and Highly Energy Performing Buildings in the European Union: National Implementation of Related Requirements of the Energy Performance Buildings Directive (2010/31/EU). Sci. Policy Rep. 2017, 978–992. [Google Scholar] [CrossRef]
- Moreno-Rangel, A.; Sharpe, T.; McGill, G.; Musau, F. Indoor air quality in Passivhaus dwellings: A literature review. Int. J. Environ. Res. Public Health 2020, 17, 4749. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Jee, N.Y.; Jeong, J.W. Effects of types of ventilation system on indoor particle concentrations in residential buildings. Indoor Air 2014, 24, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Hummelgaard, J.; Juhl, P.; Sæbjörnsson, K.O.; Clausen, G.; Toftum, J.; Langkilde, G. Indoor air quality and occupant satisfaction in five mechanically and four naturally ventilated open-plan office buildings. Build. Environ. 2007, 42, 4051–4058. [Google Scholar] [CrossRef]
- Brager, G.; Baker, L. Occupant satisfaction in mixed-mode buildings. Build. Res. Inf. 2009, 37, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Liu, J. Operating behavior and corresponding performance of mechanical ventilation systems in Chinese residential buildings. Build. Environ. 2020, 170, 106600. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, H.J. A field study of occupant behavior and energy consumption in apartments with mechanical ventilation. Energy Build. 2012, 50, 19–25. [Google Scholar] [CrossRef]
- Harvie-Clark, J.; Conlan, N.; Wei, W.; Siddall, M. How loud is too loud? noise from domestic mechanical ventilation systems. Int. J. Vent. 2019, 18, 303–312. [Google Scholar] [CrossRef]
- Afroz, Z.; Shafiullah, G.M.; Urmee, T.; Higgins, G. Modeling techniques used in building HVAC control systems: A review. Renew. Sustain. Energy Rev. 2018, 83, 64–84. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, S.; Huan, C.; Oladokun, M.O.; Lin, Z. Optimization on fresh outdoor air ratio of air conditioning system with stratum ventilation for both targeted indoor air quality and maximal energy saving. Build. Environ. 2019, 147, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Zucker, G.; Sporr, A.; Garrido-Marijuan, A.; Ferhatbegovic, T.; Hofmann, R. A ventilation system controller based on pressure-drop and CO2 models. Energy Build. 2017, 155, 378–389. [Google Scholar] [CrossRef]
- Simma, K.C.J.; Mammoli, A.; Bogus, S.M. Real-time occupancy estimation using WiFi network to optimize HVAC operation. Procedia Comput. Sci. 2019, 155, 495–502. [Google Scholar] [CrossRef]
- Tommasi, L.D.; Ridouane, H.; Giannakis, G.; Katsigarakis, K.; Lilis, G.N.; Rovas, D. Model-based comparative evaluation of building and district control-oriented energy retrofit scenarios. Buildings 2018, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Yan, C.; Liu, H.; Wang, J.; Yang, Z.; Jiang, Y. Smart energy systems: A critical review on design and operation optimization. Sustain. Cities Soc. 2020, 62, 102369. [Google Scholar] [CrossRef]
- Wu, Y.; Maravelias, C.T.; Wenzel, M.J.; ElBsat, M.N.; Turney, R.T. Predictive maintenance scheduling optimization of building heating, ventilation, and air conditioning systems. Energy Build. 2020, 110487. [Google Scholar] [CrossRef]
- Zhang, C.; Pomianowski, M.; Heiselberg, P.K.; Yu, T. A review of integrated radiant heating/cooling with ventilation systems-thermal comfort and indoor air quality. Energy Build. 2020, 223, 110094. [Google Scholar] [CrossRef]
- Chenari, B.; Carrilho, J.D.; da Silva, M.G. Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review. Renew. Sustain. Energy Rev. 2016, 59, 1426–1447. [Google Scholar] [CrossRef]
- Ratajczak, K.; Amanowicz, Ł.; Szczechowiak, E. Assessment of the air streams mixing in wall-type heat recovery units for ventilation of existing and refurbishing buildings toward low energy buildings. Energy Build. 2020, 227, 110427. [Google Scholar] [CrossRef]
- Seppanen, O.A.; Fisk, W.J. Summary of Human Responses to Ventilation. Available online: https://escholarship.org/content/qt64k2p4dc/qt64k2p4dc.pdf (accessed on 16 October 2020).
- Jaakkola, J.J.; Miettinen, P. Type of ventilation system in office buildings and sick building syndrome. Am. J. Epidemiol. 1995, 141, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Burge, S.; Hedge, A.; Wilson, S.; Bass, J.H.; Robertson, A. Sick building syndrome: A study of 4373 office workers. Ann. Occup. Hyg. 1987, 31, 493–504. [Google Scholar]
- Smedje, G.; Wang, J.; Norbäck, D.; Nilsson, H.; Engvall, K. SBS symptoms in relation to dampness and ventilation in inspected single-family houses in Sweden. Int. Arch. Occup. Environ. Health 2017, 90, 703–711. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Hou, J.; Cheng, R.; Sheng, Y.; Zhang, X.; Sundell, J. Indoor air quality, ventilation and their associations with sick building syndrome in Chinese homes. Energy Build. 2019, 197, 112–119. [Google Scholar] [CrossRef]
- Amouei, A.; Aghalari, Z.; Zarei, A.; Afsharnia, M.; Geraili, Z.; Qasemi, M. Evaluating the relationships between air pollution and environmental parameters with sick building syndrome in schools of Northern Iran. Indoor Built Environ. 2019, 28, 1422–1430. [Google Scholar] [CrossRef]
- Jayasooriya, V.M.; Rajapaksha, R.M.D.H.; Ng, A.W.M.; Muthukumaran, S. Associations of Indoor Carbon Dioxide Concentration and Symptoms of Sick Building Syndrome in Air-Conditioned Lecture Halls. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Seppänen, O.; Kurnitski, J. Moisture control and ventilation. In WHO Guidelines for Indoor Air Quality: Dampness and Mould; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Bakó-Biró, Z.; Clements-Croome, D.J.; Kochhar, N.; Awbi, H.B.; Williams, M.J. Ventilation rates in schools and pupils’ performance. Build. Environ. 2012, 48, 215–223. [Google Scholar] [CrossRef]
- Batterman, S.; Su, F.C.; Wald, A.; Watkins, F.; Godwin, C.; Thun, G. Ventilation rates in recently constructed US school classrooms. Indoor Air 2017, 27, 880–890. [Google Scholar] [CrossRef]
- Eidy, M.; Tishkowski, K. Radon Toxicity. StatPearls [Internet]; StatPearls Publishing LLC: Bethesda, MD, USA, 2020. [Google Scholar]
- Si, H. Indoor air pollution, lung cancer and solutions. Cancer Cell Res. 2018, 19, 464–470. [Google Scholar]
- Bivolarova, M.P.; Melikov, A.K.; Mizutani, C.; Kajiwara, K.; Bolashikov, Z.D. Bed-integrated local exhaust ventilation system combined with local air cleaning for improved IAQ in hospital patient rooms. Build. Environ. 2016, 100, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Langvatn, H.; Bartz-Johannessen, C.; Schrama, J.C.; Hallan, G.; Furnes, O.; Lingaas, E.; Walenkamp, G.; Engesæter, L.B.; Dale, H. Operating room ventilation—Validation of reported data on 108,067 primary total hip arthroplasties in the Norwegian Arthroplasty Register. J. Eval. Clin. Pract. 2020, 26, 1022–1029. [Google Scholar] [CrossRef]
- Kembel, S.W.; Jones, E.; Kline, J.; Northcutt, D.; Stenson, J.; Womack, A.M.; Bohannan, B.J.; Brown, G.Z.; Green, J.L. Architectural design influences the diversity and structure of the built environment microbiome. ISME J. 2012, 6, 1469–1479. [Google Scholar] [CrossRef] [Green Version]
- Lipinski, T.; Ahmad, D.; Serey, N.; Jouhara, H. Review of ventilation strategies to reduce the risk of disease transmission in high occupancy buildings. Int. J. Thermofluids 2020, 7–8, 100045. [Google Scholar] [CrossRef]
- Mouchtouri, V.A.; Koureas, M.; Kyritsi, M.; Vontas, A.; Kourentis, L.; Sapounas, S.; Rigakos, G.; Petinaki, E.; Tsiodras, S.; Hadjichristodoulou, C. Environmental contamination of SARS-CoV-2 on surfaces, air-conditioner and ventilation systems. Int. J. Hyg. Environ. Health 2020, 230, 113599. [Google Scholar] [CrossRef] [PubMed]
- Correia, G.; Rodrigues, L.; Silva, M.G.; Gonçalves, T. Airborne route and bad use of ventilation systems as non-negligible factors in SARS-CoV-2 transmission. Med. Hypotheses 2020, 141, 109781. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Heating, Ventilation and Air-Conditioning Systems in the Context of COVID-19: First Update; European Centre for Disease Prevention and Control: Solna, Sweden, 2020. [Google Scholar]
- Deng, H.Y.; Feng, Z.; Cao, S.J. Influence of air change rates on indoor CO2 stratification in terms of Richardson number and vorticity. Build. Environ. 2018, 129, 74–84. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, Y.; Zhai, C.; Wang, M. Performance evaluation of different air distribution systems for removal of concentrated emission contaminants by using vortex flow ventilation system. Build. Environ. 2018, 142, 211–220. [Google Scholar] [CrossRef]
- Kong, X.; Xi, C.; Li, H.; Lin, Z. A comparative experimental study on the performance of mixing ventilation and stratum ventilation for space heating. Build. Environ. 2019, 157, 34–46. [Google Scholar] [CrossRef]
- Meslem, A.; Bragança, P.; Sodjavi, K. Experimental analysis of mixing ventilation efficiency using a vortex diffuser: Comparison to a lobed multicone diffuser. Sci. Technol. Built Environ. 2018, 24, 1041–1053. [Google Scholar] [CrossRef]
- Tawackolian, K.; Lichtner, E.; Kriegel, M. Draught perception in intermittent ventilation at neutral room temperature. Energy Build. 2020, 224, 110268. [Google Scholar] [CrossRef]
- Amai, H.; Novoselac, A. Experimental study on air change effectiveness in mixing ventilation. Build. Environ. 2016, 109, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Bragança, P.; Sodjavi, K.; Meslem, A.; Nastase, I. Passive control strategy for mixing ventilation in heating mode using lobed inserts. Energy Build. 2016, 133, 512–528. [Google Scholar] [CrossRef]
- Sadeghian, P.; Polak, J.; Afshari, A.; Sadrizadeh, S. Numerical investigation on the impact of different supply air terminal devices on the performance of the newly combined ventilation and heating system. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 609, No. 5; p. 052024. [Google Scholar]
- Chen, H.; Janbakhsh, S.; Larsson, U.; Moshfegh, B. Numerical investigation of ventilation performance of different air supply devices in an office environment. Build. Environ. 2015, 90, 37–50. [Google Scholar] [CrossRef]
- Tanabe, S.; Kimura, K. Effects of Air Temperature, Humidity, and Air Movement on Thermal Comfort Under Hot and Humid Conditions; (No. CONF-9406105-); American Society of Heating 1994, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA USA, 1994. [Google Scholar]
- Kaam, S.; Raftery, P.; Cheng, H.; Paliaga, G. Time-averaged ventilation for optimized control of variable-air-volume systems. Energy Build. 2017, 139, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Wigö, H. Technique and Human Perception of Intermittent Air Velocity Variation. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2005. [Google Scholar]
- Kabanshi, A.; Wigö, H.; Ljung, R.; Sörqvist, P. Human perception of room temperature and intermittent air jet cooling in a classroom. Indoor Built Environ. 2017, 26, 528–537. [Google Scholar] [CrossRef]
- Kabanshi, A.; Yang, B.; Sörqvist, P.; Sandberg, M. Occupants’ perception of air movements and air quality in a simulated classroom with an intermittent air supply system. Indoor Built Environ. 2019, 28, 63–76. [Google Scholar] [CrossRef]
- Kabanshi, A.; Wigö, H.; Sandberg, M. Experimental evaluation of an intermittent air supply system–Part 1: Thermal comfort and ventilation efficiency measurements. Build. Environ. 2016, 95, 240–250. [Google Scholar] [CrossRef]
- Kabanshi, A.; Wigö, H.; Ljung, R.; Sörqvist, P. Experimental evaluation of an intermittent air supply system–Part 2: Occupant perception of thermal climate. Build. Environ. 2016, 108, 99–109. [Google Scholar] [CrossRef]
- Hua, J.; Ouyang, Q.; Wang, Y.; Li, H.; Zhu, Y. A dynamic air supply device used to produce simulated natural wind in an indoor environment. Build. Environ. 2012, 47, 349–356. [Google Scholar] [CrossRef]
- Wang, G.; Song, L. Air handling unit supply air temperature optimal control during economizer cycles. Energy Build. 2012, 49, 310–316. [Google Scholar] [CrossRef]
- Gromow, E.; Wierciński, Z. Polepszenie rozdziału powietrza w pomieszczeniu wentylowanym za pomocą niestacjonarnego efektu Coanda. Ciepłownictwo Ogrzew. Went. 2002, 33, 27–29. [Google Scholar]
- Gromow, E.; Wierciński, Z. Wykorzystanie histerezy efektu Coanda do polepszenia wentylacji mieszania. Ciepłownictwo Ogrzew. Went. 2003, 34, 20–23. [Google Scholar]
- Newman, B.G. The Deflexion of Plane Jet by Adjacent Boundaries—Coanda Effect; Lachman, G.V., Ed.; Pergamon Press: Oxford, UK, 1961. [Google Scholar]
- Skotnicka-Siepsiak, A. Hysteresis of the Coanda Effect. J. Fluids Eng. 2018, 140, 011202. [Google Scholar] [CrossRef]
- Allery, C.; Guérin, S.; Hamdouni, A.; Sakout, A. Experimental and numerical POD study of the Coanda effect used to reduce self-sustained tones. Mech. Res. Commun. 2004, 31, 105–120. [Google Scholar] [CrossRef]
- Fernholz, H.H. Zur Umlenkung von Freistrahlen an Konvex Gekrümmten Wänden. Ph.D. Thesis, TU Berlin, Berlin, Germany, 1965. [Google Scholar]
- Li, A.; Hou, Y.; Yang, J. Attached ventilation based on a curved surface wall. In Building Simulation; Tsinghua University Press: Beijing, China, 2019; Volume 12, pp. 505–515. [Google Scholar]
- Li, A. Extended Coanda Effect and attachment ventilation. SAGE 2019. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Li, L.; Wu, R.; Wang, Y.; Li, A. A numerical study on the effect of column layout on air distribution and performance of column attachment ventilation. In Building Simulation; Tsinghua University Press: Beijing, China, 2020; pp. 1–14. [Google Scholar]
- Trancossi, M. An Overview of Scientific and Technical Literature on Coanda Effect Applied to Nozzles; SAE Technical Paper; SAE: Warrendale, PA, USA, 2011; No. 2011-01-2591. [Google Scholar]
- Kireev, V.M.; Goltsov, A.B.; Seminenko, A.S.; Ovsyannikov, Y.G. Creation of a new energy-efficient design of the dustexhaust system. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 552, p. 012021. [Google Scholar]
- Trancossi, M.; Dumas, A.; Das, S.S.; Pascoa, J. Design methods of Coanda effect nozzle with two streams. INCAS Bull. 2014, 6, 83. [Google Scholar]
- Alekseenko, S.V.; Markovich, D.M. Reattachment of a plane turbulent jet to a wall upon injection and suction. J. Appl. Mech. Tech. Phys. 1997, 38, 417–422. [Google Scholar] [CrossRef]
- Gad-el-Hak, M.; Pollard, A.; Bonnet, J.P. (Eds.) Flow Control: Fundamentals and Practices; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003; Volume 53. [Google Scholar]
- Handbook ASHRAE. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA; Fundamentals SI edition; Chapter 20 Space air diffusion; Handbook ASHRAE: Atlanta, GA, USA, 2017. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skotnicka-Siepsiak, A. The Applicability of Coanda Effect Hysteresis for Designing Unsteady Ventilation Systems. Energies 2021, 14, 34. https://doi.org/10.3390/en14010034
Skotnicka-Siepsiak A. The Applicability of Coanda Effect Hysteresis for Designing Unsteady Ventilation Systems. Energies. 2021; 14(1):34. https://doi.org/10.3390/en14010034
Chicago/Turabian StyleSkotnicka-Siepsiak, Aldona. 2021. "The Applicability of Coanda Effect Hysteresis for Designing Unsteady Ventilation Systems" Energies 14, no. 1: 34. https://doi.org/10.3390/en14010034
APA StyleSkotnicka-Siepsiak, A. (2021). The Applicability of Coanda Effect Hysteresis for Designing Unsteady Ventilation Systems. Energies, 14(1), 34. https://doi.org/10.3390/en14010034