Quantify Coal Macrolithotypes of a Whole Coal Seam: A Method Combing Multiple Geophysical Logging and Principal Component Analysis
Abstract
:1. Introduction
2. Geological Background
2.1. Tectonics
2.2. Coal Measurements and Coal Seams
3. Data and Methodology
3.1. Data Preparation and Optimization of Well Logging Data
3.2. L-Index Identification Model by PCA Method
3.3. The Relationship between L-Index and Coal Macrolithotypes
3.4. Evaluation of the Whole Coal Seam in Single Well
4. Result and Discussion
4.1. Verification of the L-Index Model
4.2. Vertical Distributions of Coal Macrolithotypes
4.3. Regional Distribution of Coal Macrolithotypes
4.4. Influence of Coal Macrolithotype on Fracturing Efficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, X.H.; Qin, Y.; Wang, G.G.X.; Rudolph, V. Evaluation of coal structure and permeability with the aid of geophysical logging technology. Fuel 2009, 88, 2278–2285. [Google Scholar] [CrossRef]
- Cao, L.T.; Yao, Y.B.; Cui, C.; Sun, Q.P. Characteristics of in-situ stress and its controls on coalbed methane development in the southeastern Qinshui Basin, North China. Eng. Geosci. 2020, 1, 69–80. [Google Scholar]
- Yao, Y.B.; Liu, D.M.; Tang, D.Z.; Tang, S.H.; Huang, W.H. Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals. Int. J. Coal Geol. 2008, 73, 27–42. [Google Scholar] [CrossRef]
- Zheng, S.J.; Yao, Y.B.; Liu, D.M.; Cai, Y.D.; Liu, Y. Characterizations of full-scale pore size distribution, porosity and permeability of coals: A novel methodology by nuclear magnetic resonance and fractal analysis theory. Int. J. Coal Geol. 2018, 196, 148–158. [Google Scholar] [CrossRef]
- Karacan, C.O.; Ruiz, F.A.; Cotè, M.; Phipps, S. Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction. Int. J. Coal Geol. 2011, 86, 121–156. [Google Scholar] [CrossRef]
- Wang, Y.J.; Liu, D.M.; Cai, Y.D.; Yao, Y.B.; Zhou, Y.F.J. Evaluation of structured coal evolution and distribution by geophysical logging methods in the Gujiao Block, northwest Qinshui basin, China. Nat. Gas. Sci. Eng. 2018, 51, 210–222. [Google Scholar] [CrossRef]
- Su, X.B.; Lin, X.Y.; Zhao, M.J.; Song, Y.; Liu, S.B. The upper Paleozoic coalbed methane system in the Qinshui basin, China. AAPG Bull. 2005, 89, 81–100. [Google Scholar] [CrossRef]
- Cao, L.T.; Yao, Y.B.; Liu, D.M.; Yang, Y.H.; Wang, Y.J.; Cai, Y.D. Application of seismic curvature attributes in the delineation of coal texture and deformation in Zhengzhuang field, southern Qinshui Basin. AAPG Bull. 2020, 104, 1143–1166. [Google Scholar] [CrossRef]
- Jiang, B.; Qu, Z.H.; Wang, G.G.X. Effects of structural deformation on formation of coalbed methane reservoirs in Huaibei coalfield, China. Int. J. Coal Geol. 2010, 82, 175–183. [Google Scholar] [CrossRef]
- Tao, S.; Tang, D.Z.; Xu, H.; Gao, L.J.; Fang, Y. Factors controlling high-yield coalbed methane vertical wells in the Fanzhuang Block, Southern Qinshui Basin. Int. J. Coal Geol. 2014, 134, 38–45. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Bustin, R.M. Variation in micropore capacity and size distribution with composition in bituminous coal of the Western Canadian Sedimentary Basin: Implications for coalbed methane potential. Fuel 1996, 75, 1483–1498. [Google Scholar] [CrossRef]
- Connell, L.D.; Lu, M.; Pan, Z.J. An analytical coal permeability model for tri-axial strain and stress conditions. Int. J. Coal Geol. 2010, 84, 103–114. [Google Scholar] [CrossRef]
- O’Keefe, J.M.K.; Bechtel, A.; Christanis, K.; Dai, S.F.; DiMichele, W.A.; Eble, C.F.; Esterle, J.S.; Mastalerz, M.; Raymond, A.L.; Valentim, B.V.; et al. On the fundamental difference between coal rank and coal type. Int. J. Coal Geol. 2013, 118, 58–87. [Google Scholar] [CrossRef]
- Ramandi, H.L.; Mostaghimi, L.; Armstrong, R.T.; Saadatfar, M.; Pinczewski, W.V. Porosity and permeability characterization of coal: A micro-computed tomography study. Int. J. Coal Geol. 2016, 154, 57–68. [Google Scholar] [CrossRef]
- Zhao, J.L.; Xu, H.; Tang, D.Z.; Mathews, J.P.; Li, S.; Tao, S. Coal seam porosity and fracture heterogeneity of macrolithotypes in the Hancheng Block, eastern margin, Ordos Basin, China. Int. J. Coal Geol. 2016, 159, 18–29. [Google Scholar] [CrossRef]
- Tao, S.; Pan, Z.J.; Chen, S.D.; Tang, S.L. Coal seam porosity and fracture heterogeneity of marcolithotypes in the Fanzhuang Block, southern Qinshui Basin, China. J. Nat. Gas Sci. Eng. 2019, 66, 148–158. [Google Scholar] [CrossRef]
- Karacan, C.O.; Mitchell, G.D. Behavior and effect of different coal microlithotypes during gas transport for carbon dioxide sequestration into coal seams. Int. J. Coal Geol. 2003, 53, 201–217. [Google Scholar] [CrossRef]
- Zhang, S.H.; Tang, S.H.; Tang, D.Z.; Pan, Z.J.; Yang, F. The characteristics of coal reservoir pores and coal facies in Liulin district, Hedong coal field of China. Int. J. Coal Geol. 2010, 81, 117–127. [Google Scholar] [CrossRef]
- Teng, J.; Yao, Y.B.; Liu, D.M.; Cai, Y.D. Evaluation of coal texture distributions in the southern Qinshui basin, North China: Investigation by a multiple geophysical logging method. Int. J. Coal Geol. 2015, 140, 9–22. [Google Scholar] [CrossRef]
- Xu, H.; Tang, D.Z.; Mathews, J.P.; Zhao, J.L.; Li, B.Y.; Tao, S.; Li, S. Evaluation of coal macrolithotypes distribution by geo-physical logging data in the Hancheng Block, Eastern Margin, Ordos Basin, China. Int. J. Coal Geol. 2016, 165, 265–277. [Google Scholar] [CrossRef]
- Ren, P.F.; Xu, H.; Tang, D.Z.; Li, Y.K.; Sun, C.H.; Tao, S.; Li, S.; Xin, F.D.; Cao, L.K. The identification of coal texture in dif-ferent rank coal reservoirs by using geophysical logging data in northwest Guizhou, China: Investigation by principal com-ponent analysis. Fuel 2018, 230, 258–265. [Google Scholar] [CrossRef]
- Roslin, A.; Esterle, J.S. Electrofacies analysis using high-resolution wireline geophysical data as a proxy for inertinite-rich coal distribution in Late Permian Coal Seams, Bowen Basin. Int. J. Coal Geol. 2015, 152, 10–18. [Google Scholar] [CrossRef]
- Charbucinski, J.; Nichols, W. Application of spectrometric nuclear borehole logging for reserves estimation and mine planning at Callide coalfields open-cut mine. Appl. Energy 2003, 74, 313–322. [Google Scholar] [CrossRef]
- Fu, X.H.; Qin, Y.; Wang, G.G.X.; Rudolph, V. Evaluation of gas content of coalbed methane reservoirs with the aid of geophysical logging technology. Fuel 2009, 88, 2269–2277. [Google Scholar] [CrossRef]
- Hou, H.H.; Shao, L.Y.; Guo, S.Q.; Li, Z.; Zhang, Z.J.; Yao, M.L. Evaluation and genetic analysis of coal structures in deep Jiaozuo Coalfield, northern China: Investigation by geophysical logging data. Fuel 2017, 209, 552–566. [Google Scholar] [CrossRef]
- Zhou, F.D.; Yao, G.Q. Sensitivity analysis in permeability estimation using logging and injection-falloff test data for an anthracite coalbed methane reservoir in Southeast Qinshui Basin, China. Int. J. Coal Geol. 2014, 131, 41–51. [Google Scholar] [CrossRef]
- Oyler, D.C.; Mark, C.; Molinda, G.M. In situ estimation of rock strength using logging. Int. J. Coal Geol. 2010, 83, 484–490. [Google Scholar] [CrossRef]
- Shao, X.J.; Sun, Y.B.; Sun, J.M.; Tang, D.Z.; Xu, H.; Dong, X.X.; Lv, Y.M. Logging interpretation of coal petrologic parameters: A case study of Hancheng mining area. Pet. Explor. Dev. 2013, 40, 559–565. [Google Scholar] [CrossRef]
- Li, J.Q.; Liu, D.M.; Yao, Y.B.; Cai, Y.D.; Qiu, Y.K. Evaluation of the reservoir permeability of anthracite coals by geophysical logging data. Int. J. Coal Geol. 2011, 87, 121–127. [Google Scholar] [CrossRef]
- Karacan, C.O. Elastic and shear moduli of coal measure rocks derived from basic well logs using fractal statistics and radial basis functions. Int. J. Rock Mech. Min. Sci. 2009, 46, 1281–1295. [Google Scholar] [CrossRef]
- Zhao, J.L.; Tang, D.Z.; Qin, Y.; Xu, H. Experimental study on structural models of coal macrolithotypes and its well logging responses in the Hancheng area, Ordos Basin, China. J. Petrol. Sci. Eng. 2018, 166, 658–672. [Google Scholar] [CrossRef]
- Yu, H.Y.; Khan, F.; Garaniya, V. An alternative formulation of PCA for process monitoring using distance correlation. Ind. Eng. Chem. Res. 2016, 55, 656–669. [Google Scholar] [CrossRef]
- Granato, D.; Santos, J.S.; Escher, G.B.; Ferreira, B.L.; Maggio, R.M. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. J. Food Sci. 2018, 72, 83–90. [Google Scholar] [CrossRef]
- Li, W.; Peng, M.J.; Wang, Q.Z. Improved PCA method for sensor fault detection and isolation in a nuclear power plant. Nucl. Eng. Technol. 2019, 51, 146–154. [Google Scholar] [CrossRef]
- Asante-Okyere, S.; Shen, C.B.; Ziggah, Y.Y.; Rulegeya, M.M. Principal component analysis (PCA) based hybrid models for the accurate estimation of reservoir water saturation. Comput. Geosci. 2020, 145, 104555. [Google Scholar] [CrossRef]
- Cai, Y.D.; Liu, D.M.; Li, J.Q.; Qiu, Y.K. Geological controls on prediction of coalbed methane of No. 3 coal seam in Southern Qinshui Basin, North China. Int. J. Coal Geol. 2011, 88, 101–112. [Google Scholar] [CrossRef]
- Wang, H.; Yao, Y.B.; Liu, D.M.; Pan, Z.J.; Yang, Y.H.; Cai, Y.D. Fault-sealing capability and its impact on coalbed methane distribution in the Zhengzhuang field, southern Qinshui Basin, North China. Nat. Gas. Sci. Eng. 2016, 28, 613–625. [Google Scholar] [CrossRef]
- Liu, S.Q.; Sang, S.X.; Liu, H.H.; Zhu, Q.P. Growth characteristics and genetic types of pores and fractures in a high-rank coal reservoir of the southern Qinshui basin. J. Cent. South Univ. 2015, 64, 140–151. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Liu, D.M.; Cai, Y.D.; Pan, Z.J.; Yao, Y.B.; Wang, Y.J. Geological and hydrological controls on the accumulation of coalbed methane within the No. 3 coal seam of the southern Qinshui Basin. Int. J. Coal Geol. 2017, 182, 94–111. [Google Scholar] [CrossRef]
- Zhang, P.; Meng, Z.P.; Jiang, S.; Chen, X.M. Characteristics of in-situ stress distribution in Zhengzhuang Region, Southern Qinshui Basin, China and its stress path during depletion. Eng. Geol. 2020, 264, 105413. [Google Scholar] [CrossRef]
- Wei, C.T.; Qin, Y.; Wang, G.G.X.; Fu, X.H.; Jiang, B.; Zhang, Z.Q. Simulation study on evolution of coalbed methane reservoir in Qinshui basin, China. Int. J. Coal Geol. 2007, 72, 53–69. [Google Scholar] [CrossRef]
- Lv, Y.M.; Tang, D.Z.; Xu, H.; Luo, H.H. Production characteristics and the key factors in high-rank coalbed methane fields: A case study on the Fanzhuang Block, Southern Qinshui Basin, China. Int. J. Coal Geol. 2012, 96, 93–108. [Google Scholar] [CrossRef]
- Standardization Administration of China; General Administration of Quality Supervision, Inspection and Quarantine of China. Chinese National Standard GB/T 18023-2000. Classification of for Bituminous Coal; Standards Press of China: Beijing, China, 2008. (In Chinese) [Google Scholar]
- Standardization Administration of China; General Administration of Quality Supervision, Inspection and Quarantine of China. Chinese National Standard GB/T 212-2008. Proximate Analysis of Coal; Standards Press of China, Beijing, China, 2008. (In Chinese) [Google Scholar]
- Shi, J.X.; Zeng, L.B.; Dong, S.Q.; Wang, J.P.; Zhang, Y.Z. Identification of coal structures using geophysical logging data in Qinshui Basin, China: Investigation by kernel Fisher discriminant analysis. Int. J. Coal Geol. 2020, 217, 103314. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; Tao, S.; Tang, D.Z.; Chen, S.D.; Ren, P.F. A mathematical method to identify and forecast coal texture of multiple and thin coal seams by using logging data in the Panguan syncline, western Guizhou, China. Nat. Gas Sci. Eng. 2020, 185, 106616. [Google Scholar] [CrossRef]
- Guo, Y.B.; Chen, H.X. Fault diagnosis of VRF air-conditioning system based on improved Gaussian mixture model with PCA approach. Int. J. Refrig. 2020, 118, 1–11. [Google Scholar] [CrossRef]
- Wang, Y.J.; Liu, D.M.; Cai, Y.D.; Yao, Y.B.; Pan, Z.J. Constraining coalbed methane reservoir petrophysical and mechanical properties through a new coal structure index in the southern Qinshui Basin, northern China: Implications for hydraulic fracturing. AAPG Bull. 2020, 104, 1817–1842. [Google Scholar] [CrossRef]
Lithotype | Sample Number | DEN (g/cm3) | AC (µs/ft) | GR (API) | RT (Ω·m) |
---|---|---|---|---|---|
Bright coal | 35 | 1.16–1.31 (1.28) | 401.92–489.86 (438.29) | 25.84–75.16 (45.59) | 661.41–6073.55 (2658.18) |
Semi-bright coal | 39 | 1.32–1.47 (1.40) | 399.07–441.13 (417.25) | 33.18–92.46 (47.84) | 221.86–4054.65 (1807.51) |
Semi-dull coal | 24 | 1.45–1.61 (1.51) | 354.57–420.29 (387.32) | 55.69–95.92 (68.07) | 83–1533.96 (975.01) |
Dull coal | 6 | 1.56–1.75 (1.67) | 354.18–385.88 (371.04) | 69.85–141.95 (100.33) | 51.11–709.81 (261.32) |
Type | DEN | AC | GR | RT |
---|---|---|---|---|
DEN | 1.000 | −0.838 | 0.811 | −0.708 |
AC | −0.838 | 1.000 | −0.756 | 0.689 |
GR | 0.811 | −0.756 | 1.000 | −0.675 |
RT | −0.708 | 0.689 | −0.675 | 1.000 |
Component | λi | Variance (%) | Cumulative % |
---|---|---|---|
1st (PC) | 3.242 | 81.057 | 81.057 |
2 | 0.362 | 9.038 | 90.095 |
3 | 0.246 | 6.158 | 96.254 |
4 | 0.150 | 3.746 | 100.000 |
Logging Curve | AC | DEN | GR | RT |
---|---|---|---|---|
1st PC | −0.914 | 0.935 | 0.902 | −0.848 |
Coal Macrolithotype | Net Coal | Bright | Semi-Bright | Semi-Dull | Dull | Mudstone |
---|---|---|---|---|---|---|
Type | / | I | II | III | IV | / |
Thickness (m) | 350.5 | 97.2 | 173.7 | 46.7 | 32.9 | 42 |
Proportion (Pi) | 100% | 27.73% | 49.56% | 13.32% | 9.39% | / |
Weight coefficient (Ci) | / | 1.0 | 1.8 | 3.3 | 3.7 | / |
Well | S-Index | Length (m) | Height (m) | Direction (°) | Well | S-Index | Length (m) | Height (m) | Direction (°) |
---|---|---|---|---|---|---|---|---|---|
Z30 | 2.16 | 152.0 | 6.7 | NE56.2 | Z76 | 1.80 | 187.8 | 7.4 | NE41.0 |
Z38 | 2.17 | 218.7 | 8.0 | NE52.8 | Z80 | 1.92 | 216.7 | 6.8 | NE40.0 |
Z49 | 1.41 | 260.0 | 6.0 | NE50.0 | Z83 | 2.23 | 195.1 | 7.4 | NE67.0 |
Z54 | 1.80 | 221.3 | 6.7 | NW56.5 | Z86 | 1.45 | 202.7 | 6.5 | NE54.5 |
Z64 | 1.94 | 170.7 | 6.7 | NW76.0 | Z91 | 2.07 | 181.4 | 7.5 | NE60.2 |
Z70 | 2.39 | 142.0 | 9.8 | NE51.0 | Z97 | 2.12 | 220.9 | 5.7 | NE42.0 |
Z73 | 1.62 | 197.7 | 6.5 | NE72.0 | Z100 | 1.71 | 178.0 | 6.7 | NW85.0 |
Well | S-Index | Compressive Strength (Mpa) | Tensile Strength (Mpa) | Elasticity Modulus (Mpa) | Poisson’s Ratio (µ) | Well | S-Index | Compressive Strength (Mpa) | Tensile Strength (Mpa) | Elasticity Modulus (Mpa) | Poisson’s Ratio (µ) |
---|---|---|---|---|---|---|---|---|---|---|---|
Z19 | 1.90 | / | / | 0.9 | 0.33 | Z76 | 1.80 | 14.52 | 0.65 | 1.17 | 0.32 |
Z30 | 2.16 | 20.91 | / | 1.63 | 0.3 | Z78 | 2.11 | 12.28 | 0.55 | 1.22 | 0.32 |
Z54 | 1.80 | 8.64 | 0.33 | 0.75 | 0.33 | Z80 | 1.92 | 17.41 | 0.78 | 1.52 | 0.31 |
Z55 | 2.22 | 28.45 | 1.2 | 2.33 | 0.3 | Z82 | 1.96 | 14.18 | 0.75 | 1.21 | 0.31 |
Z64 | 1.94 | 11.51 | 0.5 | 1.12 | 0.33 | Z91 | 2.07 | 17.68 | 0.76 | 1.43 | 0.32 |
Z70 | 2.39 | 12.41 | 0.53 | 1.07 | 0.32 | Z97 | 2.12 | 14.91 | 0.65 | 1.15 | 0.33 |
Z73 | 1.62 | 9.3 | 0.42 | 0.78 | 0.33 | Z103 | 2.41 | 18.38 | 0.85 | 1.59 | 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, C.; Chang, S.; Yao, Y.; Cao, L. Quantify Coal Macrolithotypes of a Whole Coal Seam: A Method Combing Multiple Geophysical Logging and Principal Component Analysis. Energies 2021, 14, 213. https://doi.org/10.3390/en14010213
Cui C, Chang S, Yao Y, Cao L. Quantify Coal Macrolithotypes of a Whole Coal Seam: A Method Combing Multiple Geophysical Logging and Principal Component Analysis. Energies. 2021; 14(1):213. https://doi.org/10.3390/en14010213
Chicago/Turabian StyleCui, Chao, Suoliang Chang, Yanbin Yao, and Lutong Cao. 2021. "Quantify Coal Macrolithotypes of a Whole Coal Seam: A Method Combing Multiple Geophysical Logging and Principal Component Analysis" Energies 14, no. 1: 213. https://doi.org/10.3390/en14010213
APA StyleCui, C., Chang, S., Yao, Y., & Cao, L. (2021). Quantify Coal Macrolithotypes of a Whole Coal Seam: A Method Combing Multiple Geophysical Logging and Principal Component Analysis. Energies, 14(1), 213. https://doi.org/10.3390/en14010213