Study of Radial Wall Jets from Ceiling Diffusers at Variable Air Volume
Abstract
:1. Introduction
1.1. Summary of Previous Studies
- -
- The linear spread of RWJ half-width:
- -
- The law of the momentum conservation which links the jet spread with the decay of velocity; in the self-similarity zone of an RWJ, the momentum flux M is proportional to the product of squared maximum velocity , radius r, and half-width of the mean velocity profile :
- -
- That the boundary momentum flux Mo is equal to the momentum flux in the self-similarity zone:
1.2. Goals of the Study
- Developing a method for determining the mean velocity (vector) distribution in the self-similarity zone of RWJs based on the mean speed (scalar) distribution and literature data on turbulence intensity;
- Experimental identification of the losses of the momentum flux due to the friction of the jet with the ceiling and the transfer of momentum to induced recirculating flows;
- Developing a method for calculating velocity distribution in the self-similarity zone of RWJs and its extension on the terminal zone.
2. Development of the Method for Determination of the Mean Velocity Based on the Mean Speed Data
3. Experimental Identification of Velocity Distribution and the Momentum Flux Losses for Two RWJs
3.1. Experimental Method
3.2. Results
3.3. Discussion
4. Conclusions
- The performed measurement confirmed that in self-similar flows the distribution of mean air velocity can be successfully estimated based on the measured distribution of mean air speed (magnitude of velocity vector) using the multi-channel hot-sphere anemometers system.
- A constant momentum flux can be assumed in the calculation of velocity distribution in the self-similarity zone for the relatively short distance, i.e., in the range approx. 3 < (r ‒ ro)/Ao0.5< 8. At a radial distance (r ‒ ro)/Ao0.5 = 25, the momentum flux decreases to approx. 50% of the value of momentum flux at the diffuser outlet . If constant momentum flux is assumed, the uncertainty of maximum velocity predictions are over 25%. When the reduction of the momentum flux is taken into account, the can be determined with the uncertainty of approx. 5% in the self-similarity zone and uncertainty of 0.05 m/s in the terminal zone.
- A method for determining the mean velocity distribution in RWJs was validated at Reynolds number from 24,000 to 77,800. This method takes into account the decrease of momentum, non-zero position of the jet origin, and faster velocity decrease in the terminal zone.
- A reliable method of predicting air velocity distribution in RWJs from ceiling diffusers may have a positive impact on the design process of variable air volume systems. It can help to select the diffuser size, its location, and the range of flow rate change.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
A | area, m2 |
a | coefficient |
h | height of the slot opening, m |
K | coefficient |
k | kinetic turbulence energy, m2/s2 |
L | throw length, m |
M | mean motion momentum flux, kg·m/s2 |
m | exponent |
n | exponent |
r | radial distance, m |
Re | Reynolds number, |
Tu | turbulence intensity |
U | velocity, m/s |
u | velocity fluctuations, m/s |
standard deviation (RMS) of velocity fluctuations, m/s | |
Reynolds normal stresses, m2/s2 | |
V | volume flux, m3/s |
W | mean speed, m/s |
w | speed fluctuations, m/s |
x | distance, m |
y | distance from the ceiling, m |
y1/2 | half-width of the jet profile, m |
r | density, kg/m3 |
h | dimensionless distance from the wall |
n | kinematic viscosity of air, m2/s |
Subscripts | |
M | momentum flux |
V | volume flux |
L | terminal velocity |
m | maximum |
o | origin, outlet |
r | radial, streamwise |
j | spanwise, transversal |
u | velocity |
ur | radial velocity component |
w | speed |
y | vertical, wall normal |
References
- Yang, B.; Melikov, A.K.; Kabanshi, A.; Zhang, C.; Bauman, F.S.; Cao, G.; Awbi, H.; Wigo, H.; Niu, J.; Cheong, K.W.D.; et al. A review of advanced air distribution methods—theory, practice, limitations and solutions. Energy Build. 2019, 202. [Google Scholar] [CrossRef] [Green Version]
- Advanced Variable Air Volume System. Design Guide. California Energy Comission. Available online: https://newbuildings.org/sites/default/files/A-11_LG_VAV_Guide_3.6.2.pdf (accessed on 27 November 2020).
- Introducing High Performance Air System. An AMCA International White Paper. Available online: https://www.amca.org/educate/articles-and-technical-papers/whitepapers/air-systems/high-performance-air-systems.html (accessed on 27 November 2020).
- Hurnik, M. Novel cylindrical induction controller and its application in VAV air conditioning system in an office building. Energy Build. 2016, 130, 341–349. [Google Scholar] [CrossRef]
- Anand, P.; Sekhar, C.; Cheong, D.; Santamouris, M.; Kondepudi, S. Occupancy-based zone-level VAV system control implications on thermal comfort, ventilation, indoor air quality and building energy efficiency. Energy Build. 2019, 204. [Google Scholar] [CrossRef]
- Bakke, P. An experimental investigation of a wall jet. J. Fluid Mech. 1957, 2, 467–472. [Google Scholar] [CrossRef]
- Bradshaw, P.P.; Love, E. The Normal Impingement of a Circular Air Jet on a Flat Surface; R&M 3205; ARC: London, UK, 1959; Available online: http://naca.central.cranfield.ac.uk/reports/arc/rm/3205.pdf (accessed on 30 November 2020).
- Rajaratnam, N. Turbulent Jets, 1st ed.; Elsevier Scientific Publishing Company: Amsterdam, The Netherland; Oxford, UK; New York, NY, USA, 1976; ISBN 9780080869964. [Google Scholar]
- Tanaka, T.; Tanaka, E. Experimental studies of a radial turbulent jet. 2. Wall jet on a flat smooth plate. Bull. JSME Jpn. Soc. Mech. Eng. 1977, 20, 209–215. [Google Scholar] [CrossRef]
- Cooper, D.; Jackson, D.C.; Launder, B.E.; Liao, G.X. Impinging jet studies for turbulence model assessment. 1. Flow-field experiments. Int. J. Heat Mass Transf. 1993, 36, 2675–2684. [Google Scholar] [CrossRef]
- Knowles, K.; Myszko, M. Turbulence measurements in radial wall-jets. Exp. Therm. Fluid Sci. 1998, 17, 71–78. [Google Scholar] [CrossRef]
- Guerra, D.R.S.; Su, J.; Freire, A.P.S. The near wall behavior of an impinging jet. Int. J. Heat Mass Transf. 2005, 48, 2829–2840. [Google Scholar] [CrossRef]
- Hussein, H.J.; Capp, S.P.; George, W.K. Velocity-Measurements in A High-Reynolds-Number, Momentum-Conserving, Axisymmetrical, Turbulent Jet. J. Fluid Mech. 1994, 258, 31–75. [Google Scholar] [CrossRef] [Green Version]
- Braganca, P.; Sodjavi, K.; Meslem, A.; Nastase, I. Passive control strategy for mixing ventilation in heating mode using lobed inserts. Energy Build. 2016, 133, 512–528. [Google Scholar] [CrossRef]
- Yadav, H.; Agrawal, A. Self-similar behavior of turbulent impinging jet based upon outer scaling and dynamics of secondary peak in heat transfer. Int. J. Heat Fluid Flow 2018, 72, 123–142. [Google Scholar] [CrossRef]
- Van Hout, R.; Rinsky, V.; Grobman, Y.G. Experimental study of a round jet impinging on a flat surface: Flow field and vortex characteristics in the wall jet. Int. J. Heat Fluid Flow 2018, 70, 41–58. [Google Scholar] [CrossRef]
- Tummers, M.J.; Jacobse, J.; Voorbrood, S.G.J. Turbulent flow in the near field of a round impinging jet. Int. J. Heat Mass Transf. 2011, 54, 4939–4948. [Google Scholar] [CrossRef]
- Loureiro, J.B.R.; Freire, A.P.S. Wall shear stress measurements and parametric analysis of impinging wall jets. Int. J. Heat Mass Transf. 2012, 55, 6400–6409. [Google Scholar] [CrossRef]
- Chuah, Y.; Hu, S.; Barber, J. Airflow characteristics of circular ceiling diffusers. Int. J. Archit. Sci. 2000, 1, 59–67. [Google Scholar]
- Kobayashi, T.; Sugita, K.; Umemiya, N.; Kishimoto, T.; Sandberg, M. Numerical investigation and accuracy verification of indoor environment for an impinging jet ventilated room using computational fluid dynamics. Build. Environ. 2017, 115, 251–268. [Google Scholar] [CrossRef]
- Koskela, H.; Maula, H. A CFD Model of a Swirl Diffuser for Heating and Cooling Modes. Int. J. Vent. 2013, 12, 159–165. [Google Scholar] [CrossRef]
- Arens, E.; Ghahramani, A.; Przybyla, R.; Andersen, M.; Min, S.; Peffer, T.; Raftery, P.; Zhu, M.; Luu, V.; Zhang, H. Measuring 3D indoor air velocity via an inexpensive low -power ultrasonic anemometer. Energy Build. 2020, 211. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.D.; Liu, J.J.; Jiang, N.; Chen, Q.Y. Particle image velocimetry measurement of indoor airflow field: A review of the technologies and applications. Energy Build. 2014, 69, 367–380. [Google Scholar] [CrossRef] [Green Version]
- Serra, N.; Semiao, V. Characterization of non-isothermal flows typical of built environments in a laboratory scale model. Part I—Experiments with 3D PIV. Build. Environ. 2013, 68, 225–238. [Google Scholar] [CrossRef]
- Cao, G.Y.; Sivukari, M.; Kurnitski, J.; Ruponen, M.; Seppanen, O. Particle Image Velocimetry (PIV) application in the measurement of indoor air distribution by an active chilled beam. Build. Environ. 2010, 45, 1932–1940. [Google Scholar] [CrossRef]
- Zukowska, D.; Popiolek, Z.; Melikov, A. Determination of the integral characteristics of an asymmetrical thermal plume from air speed/velocity and temperature measurements. Exp. Therm. Fluid Sci. 2010, 34, 1205–1216. [Google Scholar] [CrossRef]
- Cao, G.Y.; Kandzia, C.; Muller, D.; Heikkinen, J.; Kosonen, R.; Ruponen, M. Experimental study of the effect of turbulence intensities on the maximum velocity decay of an attached plane jet. Energy Build. 2013, 65, 127–136. [Google Scholar] [CrossRef]
- Pham, M.W.; Plourde, F.; Kim, S.D. Three-dimensional characterization of a pure thermal plume. J. Heat Transf. Trans. ASME 2005, 127, 624–636. [Google Scholar] [CrossRef]
- ANSI/ASHRAE Standard. ASHRAE 113:2005 Method of Testing for Room Air Diffusion; American Society of Heating, Refrigerating and Air Conditioning Engineers: Atlanta, GA, USA, 2005. [Google Scholar]
- Popiolek, Z. Estimation of mean speed and speed standard deviation from CFD prediction. Archit. Civil. Eng. Environ. ACEE 2008, 1, 141–146. Available online: http://www.acee-journal.pl/1,7,3,Issues.html (accessed on 30 November 2020).
- EU Standard. EN 13182:2002 Ventilation for Buildings—Instrumentation Requirements for Air Velocity Measurements in Ventilated Spaces; European Committee for Standardization: Brussels, Belgium, 2002. [Google Scholar]
- Koskela, H.; Heikkinen, J.; Niemela, R.; Hautalampi, T. Turbulence correction for thermal comfort calculation. Build. Environ. 2001, 36, 247–255. [Google Scholar] [CrossRef]
- Hurnik, M.; Blaszczok, M.; Popiolek, Z. Air distribution measurement in a room with a sidewall jet: A 3D benchmark test for CFD validation. Build. Environ. 2015, 93, 319–330. [Google Scholar] [CrossRef]
- Ivanov, N.; Zasimova, M. Large Eddy Simulation of Airflow in a Room with a Sidewall Jet: Comparison with Benchmark Test Data for Occupied Zone. In Proceedings of the Conference: Roomvent & Ventilation 2018: Excellent Indoor Climate and High. Performing Ventilation, Espoo, Finland, 2–5 June 2018; Available online: https://www.researchgate.net/publication/325539468_Large_Eddy_Simulation_of_Airflow_in_a_Room_with_a_Sidewall_Jet_Comparison_with_Benchmark_Test_Data_for_Occupied_Zone (accessed on 30 November 2020).
- Fairweather, M.; Hargrave, G.K. Experimental investigation of an axisymmetric, impinging turbulent jet. 1. Velocity field. Exp. Fluids 2002, 33, 464–471. [Google Scholar] [CrossRef]
- EU Standard. EN 12238:2001 Ventilation for Buildings—Air Terminal Devices—Aerodynamic Testing and Rating for Mixed Flow Application; European Committee for Standardization: Brussels, Belgium, 2001. [Google Scholar]
- ASHRAE. ASHRAE Handbook—Fundamentals; SI Edition; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE): Atlanta, GA, USA, 2017; Chapter 20; ISBN 9781939200570. [Google Scholar]
- Ameen, A.; Cehlin, M.; Larsson, U.; Karimipanah, T. Experimental investigation of ventilation performance of different air distribution systems in an office environment—heating mode. Energies 2019, 12, 1835. [Google Scholar] [CrossRef] [Green Version]
- Karimipanah, T.; Awbi, H.B. Theoretical and experimental investigation of impinging jet ventilation and comparison with wall displacement ventilation. Build. Environ. 2002, 37, 1329–1342. [Google Scholar] [CrossRef]
- Ameen, A.; Cehlin, M.; Larsson, U.; Karimipanah, T. Experimental investigation of ventilation performance of different air distribution systems in an office environment—cooling mode. Energies 2019, 12, 1354. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.; Kang, Y.; Yan, Z.; Chen, B.; Zhong, K. Optimization study of return vent height for an impinging jet ventilation system with exhaust/return-split configuration by TOPSIS method. Build. Environ. 2020, 177, 106858. [Google Scholar] [CrossRef]
1.2699 | 0.1341 | 0.5985 | 0.7754 | −0.9099 | 0.1254 | 0 | 0 | |
0.05083 | 1.4247 | 0.5975 | −1.8103 | 1.1499 | −2.5801 | 1.3370 | −0.3040 | |
1.3881 | 0.1679 | 0.7557 | 0.9184 | −1.8272 | 2.8902 | −2.3841 | 0.6658 | |
0.3452 | 0.0010 | 0.7185 | 1.2843 | −2.5256 | 6.0441 | −4.0327 | 0.9489 | |
0.08412 | 0.0010 | 0.5642 | 4.7327 | 4.3763 | −4.2349 | 1.5936 | −0.1598 | |
1.4023 | 0.1415 | 0.4886 | 0.4814 | −0.8243 | 0.2697 | 0 | 0 |
Multi-Cone Diffuser | r | M/ρ | Plate Diffuser | r | M/ρ | ||||
m | m | m/s | m4/s2 | m | m | m/s | m4/s2 | ||
0.5 | 0.050 | 3.299 | 1.306 | 1 | 0.073 | 1.971 | 1.360 | ||
1 | 0.090 | 1.765 | 1.353 | 1.5 | 0.121 | 1.277 | 1.428 | ||
1.5 | 0.142 | 1.120 | 1.289 | 2 | 0.169 | 0.853 | 1.181 | ||
2 | 0.189 | 0.805 | 1.182 | 2.5 | 0.211 | 0.695 | 1.225 | ||
2.5 | 0.226 | 0.631 | 1.086 | 3 | 0.255 | 0.571 | 1.204 | ||
3 | 0.275 | 0.499 | 0.989 | 3.5 | 0.294 | 0.451 | 1.008 | ||
3.5 | 0.330 | 0.386 | 0.831 | 4 | 0.344 | 0.383 | 0.972 | ||
4 | 0.452 | 0.295 | 0.758 | 4.5 | 0.502 | 0.283 | 0.871 |
Multi-Cone Diffuser | Plate Diffuser | ||
---|---|---|---|
Vo | m3/h | 793 | |
- | 0.0906 | ||
ro | m | ‒0.05 | 0.19 |
- | ‒0.00122 | ||
- | 1.71 | ||
Mo/ρ | m4/s2 | 1.364 | 1.492 |
Ao | m2 | 0.0356 | 0.0325 |
Ao0.5 | m | 0.189 | 0.180 |
Uo | m/s | 6.19 | 6.77 |
Re | - | 77,800 | 81,400 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurnik, M.; Kaczmarczyk, J.; Popiolek, Z. Study of Radial Wall Jets from Ceiling Diffusers at Variable Air Volume. Energies 2021, 14, 240. https://doi.org/10.3390/en14010240
Hurnik M, Kaczmarczyk J, Popiolek Z. Study of Radial Wall Jets from Ceiling Diffusers at Variable Air Volume. Energies. 2021; 14(1):240. https://doi.org/10.3390/en14010240
Chicago/Turabian StyleHurnik, Maria, Jan Kaczmarczyk, and Zbigniew Popiolek. 2021. "Study of Radial Wall Jets from Ceiling Diffusers at Variable Air Volume" Energies 14, no. 1: 240. https://doi.org/10.3390/en14010240
APA StyleHurnik, M., Kaczmarczyk, J., & Popiolek, Z. (2021). Study of Radial Wall Jets from Ceiling Diffusers at Variable Air Volume. Energies, 14(1), 240. https://doi.org/10.3390/en14010240