Cyber-Security of Smart Microgrids: A Survey
Abstract
:1. Introduction
2. Cyber–Physical Systems in Smart Microgrids and Challenges
2.1. Cyber–Physical System
2.2. Challenges and Issues
3. Sample of Recent Cyber-Security Projects
3.1. Blockchain-Based Security Framework for the Internet of Thing-Enabled Solar Micro-Inverters
3.2. Consequence-Driven Cyber-Security for High Power EV Charging Infrastructure
3.3. Design of Cryptographic Module for Distributed Energy Resources
3.4. Design for Secure Reconfigurable Power Converters
3.5. Securing Vehicle Charging Infrastructure
4. Review of Cyber-Security Standards and Protocols
4.1. AMI System Security Requirements (AMI-SEC)
4.2. NERC CIP
4.3. NISTIR 7628
4.4. IEC 62351
4.5. ISO/IEC 27001 and 27002
4.6. GB/T 22239
4.7. NIST SP 800-82
- CEN-CENELEC-ETSI Smart Grid Coordination Group [42]
- Smart Grid Interoperability Panel [43]
- European Commission Smart Grid Mandate Standardization M/490 [44]
- OpenSG SG Security Working Group [45]
- German Standardization Roadmap E-Energy/Smart Grid [46]
- The State Grid Corporation of China (SGCC) Framework [47]
- IEC Strategic Group 3 Smart Grid [48]
- IEEE 2030 [49]
- Japanese Industrial Standards Committee (JISC) Roadmap to International Standardization for Smart Grid
- ITU-T Smart Grid Focus Group
5. Cyber-Attacks: General Classification
5.1. Attacks on Data Availability
5.2. Attacks on Data Integrity
5.3. Attacks on Data Confidentiality
6. Impacts of Cyber-Attacks on Smart Microgrids
6.1. Economic Impacts
6.2. Physical/Technical Impacts
7. Construction of Cyber-Attacks in Smart Microgrids
7.1. Cyber-Attacks on State Estimation
7.2. Cyber-Attacks on Voltage Control
7.3. Cyber-Attacks on Frequency Control
7.4. Cyber-Attacks on Protection System
8. Defensive Strategies against Cyber-Attacks
8.1. Defensive Strategies Based on Protection
8.2. Defensive Strategies Based on Detection/Mitigation
8.2.1. Static Detectors of Cyber-Attacks
8.2.2. Dynamic Detectors of Cyber-Attacks
9. Implementation Examples
9.1. Example 1: Cyber-Attacks in Power Electronics-Intensive DC Microgrids
9.2. Example 2: Cyber-Attacks on Frequency Control of AC Microgrid
9.2.1. Exogenous Attack on Measurement of Tie-Line Active Power
9.2.2. Scaling Attack on Measurement of Tie-Line Active Power
9.3. Example 3: Cyber-Attacks on State Estimation
9.3.1. Attack Strategy Formulation
9.3.2. Defense Strategy Formulation
10. Discussions and Future Trends
10.1. State Estimation of AC/DC Microgrids under Cyber-Attack
10.2. Frequency Control of AC/DC Microgrids under Cyber-Attack
10.3. Voltage Regulation of AC/DC Microgrids under Cyber-Attack
10.4. Electric Vehicles and Cyber-Attacks
10.5. Blockchain and Cyber-Security in Modern Grids
10.6. Software-Related Techniques and Cyber-Attacks
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, Z.; Shahidehpour, M.; Aminifar, F. Cybersecurity in Distributed Power Systems. Proc. IEEE 2017, 105, 1367–1388. [Google Scholar] [CrossRef]
- Singh, S.K.; Khanna, K.; Bose, R.; Panigrahi, B.K.; Joshi, A. Joint-Transformation-Based Detection of False Data Injection Attacks in Smart Grid. IEEE Trans. Ind. Inf. 2018, 14, 89–97. [Google Scholar] [CrossRef]
- Available online: https://www.greentechmedia.com/research/subscription/u-s-solar-market-insight#gs.wpfDw8k (accessed on 20 November 2020).
- Wind Vision. Energy.gov. Available online: https://www.energy.gov/eere/wind/maps/wind-vision (accessed on 20 November 2020).
- Lee, R.M.; Assante, M.J.; Conway, T. Analysis of the Cyber Attack on the Ukrainin Power Grid. 2016. Available online: http://www.nerc.com/pa/CI/ESISAC/Documents/E-ISAC_SANS_Ukraine_DUC_18Mar2016.pdf (accessed on 20 November 2020).
- Bindra, A. Securing the Power Grid: Protecting Smart Grids and Connected Power Systems from Cyberattacks. IEEE Power Electron. Mag. 2017, 4, 20–27. [Google Scholar] [CrossRef]
- Cyber Threat and Vulnerability Analysis of the U.S. Electric Sector. 2016; [ebook] Mission Support Center, Idaho National Laboratory. Available online: https://www.energy.gov/sites/prod/files/2017/01/f34/Cyber%20Threat%20and%20Vulnerability%20Analysis%20of%20the%20U.S.%20Electric%20Sector.pdf (accessed on 20 November 2020).
- Deng, R.; Xiao, G.; Lu, R. Defending Against False Data Injection Attacks on Power System State Estimation. IEEE Trans. Ind. Inf. 2017, 13, 198–207. [Google Scholar] [CrossRef]
- Yu, J.J.Q.; Hou, Y.; Li, V.O.K. Online False Data Injection Attack Detection with Wavelet Transform and Deep Neural Networks. IEEE Trans. Ind. Inf. 2018, 14, 3271–3280. [Google Scholar] [CrossRef]
- Zhao, J.; Mili, L.; Wang, M. A Generalized False Data Injection Attacks Against Power System Nonlinear State Estimator and Countermeasures. IEEE Trans. Power Sys. 2018, 33, 4868–4877. [Google Scholar] [CrossRef]
- Sahoo, S.; Mishra, S.; Peng, J.C.; Dragicevic, T. A Stealth Cyber Attack Detection Strategy for DC Microgrids. IEEE Trans. Power Electron. 2019, 34, 8162–8174. [Google Scholar] [CrossRef] [Green Version]
- Deng, R.; Xiao, G.; Lu, R.; Liang, H.; Vasilakos, A.V. False Data Injection on State Estimation in Power Systems—Attacks, Impacts, and Defense: A Survey. IEEE Trans. Ind. Inf. 2017, 13, 411–423. [Google Scholar] [CrossRef]
- Available online: https://www.energy.gov/sites/prod/files/2018/01/f46/GMI%20Peer%20Review%20Report%202017_1-22%20FINAL%20online.pdf (accessed on 20 November 2020).
- Shi, X.; Li, Y.; Cao, Y.; Tan, Y. Cyber-physical electrical energy systems: Challenges and issues. Csee J. Power Energy Syst. 2015, 1, 36–42. [Google Scholar] [CrossRef]
- Liang, G.; Zhao, J.; Luo, F.; Weller, S.R.; Dong, Z.Y. A review of false data injection attacks against modern power systems. IEEE Trans. Smart Grid 2017, 8, 1630–1638. [Google Scholar] [CrossRef]
- Habib, H.F.; Lashway, C.R.; Mohammed, O.A. A Review of Communication Failure Impacts on Adaptive Microgrid Protection Schemes and the Use of Energy Storage as a Contingency. IEEE Trans. Ind. Appl. 2018, 54, 1194–1207. [Google Scholar] [CrossRef]
- Cintuglu, M.H.; Mohammed, O.A.; Akkaya, K.; Uluagac, A.S. A Survey on Smart Grid Cyber-Physical System Testbeds. IEEE Commun. Surv. Tutor. 2017, 19, 446–464. [Google Scholar] [CrossRef]
- Kang, K.; Son, S. Real-time data services for cyber physical systems. In Proceedings of the 2008 The 28th International Conference on Distributed Computing Systems Workshops, Beijing, China, 17–20 June 2008; pp. 483–488. [Google Scholar]
- Lin, K.; Panahi, M. A real-time service-oriented framework to support sustainable cyber-physical systems. In Proceedings of the 2010 8th IEEE International Conference on Industrial Informatics, Osaka, Japan, 13–16 July 2010; pp. 15–21. [Google Scholar]
- Huang, H.M.; Tidwell, T.; Christopher, G.; Chenyang, L.; Xiuyu, G.; Shirley, D. Cyber-physical systems for real-time hybrid structural testing: A case study. In Proceedings of the 1st ACM/IEEE International Conference Cyber-Physical Systems, Stockholm, Sweden, 13–15 April 2010; pp. 69–78. [Google Scholar]
- Venkataramanan, V.; Hahn, A.; Srivastava, A. CP-SAM: Cyber-Physical Security Assessment Metric for Monitoring Microgrid Resiliency. IEEE Trans. Smart Grid 2020, 11, 1055–1065. [Google Scholar] [CrossRef]
- Qian, H.; Huang, X.; Yu, H.; Chang, C.H. Real-time thermal management of 3D multi-core system with fine-grained cooling control. In Proceedings of the 2010 IEEE International 3D Systems Integration Conference (3DIC), Munich, Germany, 16–18 November 2010; pp. 1–6. [Google Scholar]
- Wu, F.; Chu, F.; Tseng, Y. Cyber-physical handshake. In Proceedings of the ACM SIGCOMM Computer Communication Review, Toronto, ON, Canada, 15–19 August 2011; pp. 472–473. [Google Scholar]
- Miluzzo, E.; Lane, N.D.; Fodor, K.; Peterson, R.; Lu, H.; Musolesi, M.; Eisenman, S.B.; Zheng, X.; Campbell, A.T.; Campbell, A.T.; et al. Sensing meets mobile social networks: The design, implementation and evaluation of the cenceme application. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems, Raleigh, NC, USA, 5–7 November 2008; pp. 337–350. [Google Scholar]
- Craciunas, S.S.; Haas, A.; Kirsch, C.M.; Payer, H.; Röck, H.; Rottmann, A.; Sokolova, A.; Trummer, R.; Love, J.; Sengupta, R. Information-acquisition-as-a-service for cyber-physical cloud computing. In 2nd USENIX Conference on Hot Topics in Cloud Computing; USENIX Association: Berkeley, CA, USA, 2010; p. 14. [Google Scholar]
- Zhang, W.; Kamgarpour, M.; Sun, D.; Tomlin, C.J. A Hierarchical Flight Planning Framework for Air Traffic Management. Proc. IEEE 2012, 100, 179–194. [Google Scholar] [CrossRef]
- Kim, T. Blockchain-Based Security Framework for IoT-Enabled Solar Micro Inverters: Opportunities and Challenges. In Proceedings of the CyberPELS 2019 Presentations, Knoxville, TN, USA, 29 April–1 May 2019. [Google Scholar]
- Available online: https://www.nrel.gov/grid/virtual-oscillator-controls.html (accessed on 20 November 2020).
- Carlson, R.; Rohde, K. Consequence-driven Cybersecurity for High Power EV Charging Infrastructure. In Proceedings of the CyberPELS 2019 Presentations, Knoxville, TN, USA, 1 May 2019. [Google Scholar]
- Available online: https://inl.gov/research-programs/control-systems-cyber-security/ (accessed on 20 November 2020).
- Saleem, D. Design Considerations of Cryptographic Module for Distributed Energy Resources. In Proceedings of the CyberPELS 2019 Presentations, Knoxville, TN, USA, 15 May 2019. [Google Scholar]
- Available online: https://www.energy.gov/sites/prod/files/2018/12/f58/NREL%20-%20Module-OT.PDF (accessed on 20 November 2020).
- Siddiqui, A.S.; Chowdhury, P.R.; Gui, Y.; Manjrekar, M.; Essakiappan, S.; Saqib, F. Design for Secure Reconfigurable Power Converters. In Proceedings of the 2019 IEEE CyberPELS (CyberPELS), Knoxville, Tennessee, 29 April–1 May 2019. [Google Scholar]
- Johnson, J. Securing Vehicle Charging Infrastructure. In Proceedings of the CyberPELS 2019 Presentations, Knoxville, TN, USA, 29 April–1 May 2019. [Google Scholar]
- Harvey, M.; Long, D.; Reinhard, K. Visualizing NISTIR 7628, Guidelines for Smart Grid Cyber Security. In Proceedings of the 2014 Power and Energy Conference at Illinois (PECI), Champaign, IL, USA, 28 February–1 March 2014; pp. 1–8. [Google Scholar]
- Hussain, S.M.S.; Ustun, T.S.; Kalam, A. A Review of IEC 62351 Security Mechanisms for IEC 61850 Message Exchanges. IEEE Trans. Ind. Inform. 2020, 16, 5643–5654. [Google Scholar] [CrossRef]
- Leszczyna, R. Standards on cyber security assessment of smart grid. Int. J. Crit. Infrastruct. Prot. 2018, 22, 70–89. [Google Scholar] [CrossRef]
- ISO/IEC. ISO/IEC 27001:2013: Information Technology Security Techniques Information Security Management Systems Requirements; ISO: Geneva, Switzerland, 2013. [Google Scholar]
- ISO/IEC. ISO/IEC 27002:2013: Information Technology –Security Techniques –Code of Practice for Information Security Controls; ISO: Geneva, Switzerland, 2013. [Google Scholar]
- Barbara, L.; Bohua, Y. GB/T 22239:2008–Information Security Technology–Baseline for Classified Protection of Information System Security; Technical Report; National Standard of the People’s Republic of China: Beijing, China, 2008. [Google Scholar]
- Stouffer, K.; Pillitteri, V.; Lightman, S.; Abrams, M.; Hahn, A. NIST SP 800-82 Guide to Industrial Control Systems ICS Security Revision 2; Technical Report; NIST: Gaithersburg, MD, USA, 2015.
- CEN-CENELEC-ETSI Smart Grid Coordination Group, SG-CG/M490/H_Smart Grid Information Security. Technical Report. 2014. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/xpert_group1_reference_architecture.pdf (accessed on 20 November 2020).
- NIST. NIST SP 1108r3: NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 3.0.; Technical Report; IST: Gaithersburg, MD, USA, 2014. [CrossRef]
- European Commission. M/490 Smart Grid Mandate Standardization Mandate to European Standardisation Organisations ESOs to support European Smart Grid deployment. Technical Report. 2011. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/2011_03_01_mandate_m490_en.pdf (accessed on 20 November 2020).
- OpenSG, Security Working Group. 2017. Available online: http://osgug.ucaiug.org/utilisec (accessed on 20 November 2020).
- DKE. German Roadmap E-Energy/Smart Grid 2.0; Technical Report; German Commission for Electrical, Electronic & Information Technologies of DIN and VDE: Ann Arbor, MI, USA, 2013. [Google Scholar]
- State Grid Corporation of China. SGCC Framework and Roadmap to Strong & Smart Grid Standards; Technical Report; State Grid Corporation of China: Beijing, China, 2010. [Google Scholar]
- IEC. Smart Grid Standards Map 2017. Available online: http://smartgridstandardsmap.com/ (accessed on 20 November 2020).
- IEEE Standards Association. IEEE Smart Grid Interoperability Series of Standards. IEEE, 2015. Available online: http://grouper.ieee.org/groups/scc21/2030_series/2030_series_index.html (accessed on 20 November 2020).
- Sridhar, S.; Hahn, A.; Govindarasu, M. Cyber-physical system security for the electric power grid. Proc. IEEE 2012, 100, 210–224. [Google Scholar] [CrossRef]
- NIST. Guidelines for Smart Grid Cyber Security: Volume 3; Supportive Analyses and References; NIST: Gaithersburg, MD, USA, 2010.
- Chlela, M. Cyber Security Enhancement Against Cyber-Attacks on Microgrid Controllers. Ph.D. Thesis, McGill University, Montréal, QC, Canada, 2017. [Google Scholar]
- Mirkovic, J.; Reiher, P. A taxonomy of DDoS attack and DDoS defense mechanisms. ACM Sigcomm Comput. Commun. Rev. 2004, 34, 39–53. [Google Scholar] [CrossRef]
- Zargar, S.T.; Joshi, J.; Tipper, D. A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks. Commun. Surv. Tutor. IEEE 2013, 15, 2046–2069. [Google Scholar] [CrossRef] [Green Version]
- NISTIR 7628: Guidelines for Smart Grid Cyber Security: Smart Grid Cyber Security Strategy, Architecture, and High-Level Requirements; The Smart Grid Interoperability Panel–Cyber Security Working Group: Washington, DC, USA, 2010.
- Liu, Y.; Reiter, M.K.; Ning, P. False data injection attacks against state estimation in electric power grids. In Proceedings of the 16th ACM Conference on Computer and Communications Security, Chicago, IL, USA, 9–13 November 2009; pp. 21–32. [Google Scholar]
- Kosut, O.; Jia, L.; Thomas, R.J.; Tong, L. Malicious Data Attacks on the Smart Grid. IEEE Trans. Smart Grid 2011, 2, 645–658. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Yang, J.; Yu, W.; An, D.; Zhang, N.; Zhao, W. On false data-injection attacks against power system state estimation: Modeling and countermeasures. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 717–729. [Google Scholar] [CrossRef]
- Chen, J.; Liang, G.; Cai, Z.; Hu, C.; Xu, Y.; Luo, F.; Zhao, J. Impact analysis of false data injection attacks on power system static security assessment. J. Mod. Power Syst. Clean Energy 2016, 4, 496–505. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.; Song, W.-Z.; Stewart, M.; Yang, J.; Tong, L. Online data integrity attacks against real-time electrical market in smart grid. IEEE Trans. Smart Grid 2018, 9, 313–322. [Google Scholar] [CrossRef]
- Zhao, C.; He, J.; Cheng, P.; Chen, J. Analysis of consensus-based distributed economic dispatch under stealthy attacks. IEEE Trans. Ind. Electron. 2017, 64, 5107–5117. [Google Scholar] [CrossRef]
- Li, P.; Liu, Y.; Xin, H.; Jiang, X. A robust distributed economic dispatch strategy of virtual power plant under cyber-attacks. IEEE Trans. Ind. Inf. 2018, 14, 4343–4352. [Google Scholar] [CrossRef]
- Xie, L.; Mo, Y.; Sinopoli, B. Integrity Data Attacks in Power Market Operations. IEEE Trans. Smart Grid 2011, 2, 659–666. [Google Scholar] [CrossRef]
- Thomas, R.J.; Tong, L.; Jia, L.; Kosut, O.E. Some economic impacts of bad and malicious data. PSerc 2010 Workshop 2010, 1, 1. [Google Scholar]
- Xie, L.; Mo, Y.; Sinopoli, B. False data injection attacks in electricity markets. In Proceedings of the IEEE 2010 SmartGridComm, Gaithersburg, MD, USA, 4–6 October 2010. [Google Scholar]
- Jia, L.; Thomas, R.J.; Tong, L. Impacts of malicious data on real-time price of electricity market operations. In Proceedings of the IEEE Hawaii International Conference on System Sciences (HICSS), Maui, HI, USA, 4–7 January 2012; pp. 1907–1914. [Google Scholar]
- Liu, X.; Shahidehpour, M.; Cao, Y.; Wu, L.; Wei, W.; Liu, X. Microgrid Risk Analysis Considering the Impact of Cyber Attacks on Solar PV and ESS Control Systems. IEEE Trans. Smart Grid 2017, 8, 1330–1339. [Google Scholar] [CrossRef]
- Gholami, S.; Saha, S.; Aldeen, M. A cyber-attack resilient control for distributed energy resources. In Proceedings of the 2017 IEEE PES Innovative Smart Grid Technologies Conf. Europe (ISGT-Europe), Torino, Italy, 26–29 September 2017; pp. 1–6. [Google Scholar]
- Beg, O.A.; Johnson, T.T.; Davoudi, A. Detection of false-data injection attacks in cyber-physical DC microgrids. IEEE Trans. Ind. Inf. 2017, 13, 2693–2703. [Google Scholar]
- Hao, J.; Kang, E.; Sun, J.; Wang, Z.; Meng, Z.; Li, X.; Ming, Z. An Adaptive Markov Strategy for Defending Smart Grid False Data Injection from Malicious Attackers. IEEE Trans. Smart Grid 2018, 9, 2398–2408. [Google Scholar] [CrossRef]
- Farraj, A.; Hammad, E.; Kundur, D. On the Impact of Cyber Attacks on Data Integrity in Storage-Based Transient Stability Control. IEEE Trans. Ind. Inf. 2017, 13, 3322–3333. [Google Scholar] [CrossRef]
- Farraj, A.; Hammad, E.; Kundur, D. A systematic approach to delay adaptive control design for smart grids. In Proceedings of the IEEE International Conference on Smart Grid Communications, Miami, FL, USA, 2–5 November 2015; pp. 768–773. [Google Scholar]
- Farraj, A.; Hammad, E.; Kundur, D. Enhancing the performance of controlled distributed energy resources in noisy communication environments. In Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering, Vancouver, BC, Canada, 15–18 May 2016; pp. 1–4. [Google Scholar]
- Farraj, A.; Hammad, E.; Kundur, D. A cyber-physical control framework for transient stability in smart grids. IEEE Trans. Smart Grid 2016, 9, 1205–1215. [Google Scholar] [CrossRef]
- Bobba, R.B.; Rogers, K.M.; Wang, Q.; Khurana, H.; Nahrstedt, K.; Overbye, T.J. Detecting false data injection attacks on DC state estimation. In Proceedings of the Preprints 1st Workshop Secure Control Systems (CPSWEEK), Stockholm, Sweden, 12–15 April 2010; pp. 1–9. [Google Scholar]
- Salmeron, J.; Wood, K.; Baldick, R. Analysis of electric grid security under terrorist threat. IEEE Trans Power Syst. 2004, 19, 905–912. [Google Scholar] [CrossRef] [Green Version]
- Nejabatkhah, F.; Li, Y.W.; Tian, H. Power Quality Control of Smart Hybrid AC/DC Microgrids: An Overview. IEEE Access 2019, 7, 52295–52318. [Google Scholar] [CrossRef]
- Unamuno, E.; Barrena, J.A. Hybrid ac/dc microgrids—Part II: Review and classification of control strategies. Renew. Sustain. Energy Rev. 2015, 52, 1123–1134. [Google Scholar] [CrossRef]
- Sou, K.C.; Sandberg, H.; Johansson, K.H. On the exact solution to a smart grid cyber-security analysis problem. IEEE Trans. Smart Grid 2013, 4, 856–865. [Google Scholar] [CrossRef]
- Abur, A.; Exposito, A.G. Power System State Estimation: Theory and Implementation; CRC Press: New York, NY, USA, 2004. [Google Scholar]
- Monticelli, A. Electric power system state estimation. Proc. IEEE 2000, 88, 262–282. [Google Scholar] [CrossRef]
- Monticelli, A. State Estimation in Electric Power Systems; Springer Science and Business Media, LLC: New York, NY, USA, 1999. [Google Scholar]
- Liang, J.; Sankar, L.; Kosut, O. Vulnerability analysis and consequences of false data injection attack on power system state estimation. IEEE Trans. Power Syst. 2016, 31, 3864–3872. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.H.; Chin, W.L. Blind false data injection attack using PCA approximation method in smart grid. IEEE Trans. Smart Grid 2015, 6, 1219–1226. [Google Scholar] [CrossRef]
- Liu, X.; Bao, Z.; Lu, D.; Li, Z. Modeling of local false data injection attacks with reduced network information. IEEE Trans. Smart Grid 2015, 6, 1686–1696. [Google Scholar] [CrossRef]
- Hug, G.; Giampapa, J.A. Vulnerability assessment of AC state estimation with respect to false data injection cyber-attacks. IEEE Trans. Smart Grid 2012, 3, 1362–1370. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Zhang, G.; Dong, Z.Y.; Wong, P.K. Forecasting-aided imperfect false data injection attacks against power system nonlinear state estimation. IEEE Trans. Smart Grid 2016, 7, 6–8. [Google Scholar] [CrossRef]
- Liu, X.; Li, Z. False data attacks against AC state estimation with incomplete network information. IEEE Trans. Smart Grid 2017, 8, 2239–2248. [Google Scholar] [CrossRef]
- Chakhchoukh, Y.; Ishii, H. Coordinated Cyber-Attacks on the Measurement Function in Hybrid State Estimation. IEEE Trans. Power Syst. 2015, 30, 2487–2497. [Google Scholar] [CrossRef]
- Zhuang, P.; Deng, R.; Liang, H. False data injection attacks against state estimation in multiphase and unbalanced smart distribution systems. IEEE Trans. Smart Grid 2019, 10, 6000–6013. [Google Scholar] [CrossRef]
- Deng, R.; Zhuang, P.; Liang, H. False data injection attacks against state estimation in power distribution systems. IEEE Trans. Smart Grid 2019, 10, 2871–2881. [Google Scholar] [CrossRef]
- Isozaki, Y.; Yoshizawa, S.; Fujimoto, Y.; Ishii, H.; Ono, I.; Onoda, T.; Hayashi, Y. Detection of Cyber Attacks Against Voltage Control in Distribution Power Grids with PVs. IEEE Trans. Smart Grid 2016, 7, 1824–1835. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, K.; Yuan, K.; Zhu, L.; Qian, M. Novel Detection Scheme Design Considering Cyber Attacks on Load Frequency Control. IEEE Trans. Ind. Inform. 2018, 14, 1932–1941. [Google Scholar] [CrossRef]
- Domínguez-García, A.D.; Hadjicostis, C.N.; Vaidya, N.H. Resilient networked control of distributed energy resources. IEEE J. Sel. Areas Commun. 2012, 30, 1137–1148. [Google Scholar] [CrossRef]
- Qi, J.; Hahn, A.; Lu, X.; Wang, J.; Liu, C.-C. Cybersecurity for distributed energy resources and smart inverters. IET Cyber Phys. Syst. Theory Appl. 2016, 1, 28–39. [Google Scholar] [CrossRef] [Green Version]
- Mercier, P.; Cherkaoui, R.; Oudalov, A. Optimizing a battery energy storage system for frequency control application in an isolated power system. IEEE Trans. Power Syst. 2009, 24, 1469–1477. [Google Scholar] [CrossRef]
- Wei, J.; Kundur, D.; Zourntos, T.; Butler-Purry, K. A flocking-based paradigm for hierarchical cyber-physical smart grid modeling and control. IEEE Trans. Smart Grid 2014, 5, 2687–2700. [Google Scholar] [CrossRef]
- Farraj, A.; Hammad, E.; Kundur, D. A cyber-enabled stabilizing control scheme for resilient smart grid systems. IEEE Trans. Smart Grid 2016, 7, 1856–1865. [Google Scholar] [CrossRef]
- Sargolzaei, A.; Yen, K.; Abdelghani, M. Delayed inputs attack on load frequency control in smart grid. In Proceedings of the IEEE PES Innovative Smart Grid Technology Conference, Washington, DC, USA, 19–22 February 2014; pp. 1–5. [Google Scholar]
- Esfahani, P.M.; Vrakopoulou, M.; Margellos, K.; Lygeros, J.; Andersson, G. Cyber-attack in a two-area power system: Impact identification using reachability. In Proceedings of the 2010 American Control Conference, Baltimore, MD, USA, 30 June–2 July 2010; pp. 962–967. [Google Scholar]
- Esfahani, P.M.; Vrakopoulou, M.; Margellos, K.; Lygeros, J.; Andersson, G. A robust policy for automatic generation control cyber-attack in two area power network. In Proceedings of the 49th IEEE Conference Decision Control, Atlanta, GA, USA, 15–17 December 2010; pp. 5973–5978. [Google Scholar]
- Tan, R.; Nguyen, H.H.; Foo, E.Y.S.; Dong, X.; Yau, D.K.Y.; Kalbarczyk, Z.; Iyer, R.K.; Gooi, H.B. Optimal false data injection attack against automatic generation control in power grids. In Proceedings of the 7th International Conference Cyber-Physical Systems, Vienna, Austria, 11–14 April 2016; pp. 1–10. [Google Scholar]
- Manson, S.; Anderson, D. Cybersecurity for Protection and Control Systems: An Overview of Proven Design Solutions. IEEE Ind. Appl. Mag. 2019, 25, 14–23. [Google Scholar] [CrossRef]
- TKim, T.; Poor, H.V. Strategic protection against data injection attacks on power grids. IEEE Trans. Smart Grid 2011, 2, 326–333. [Google Scholar]
- Bi, S.; Zhang, Y.J. Graphical methods for defense against false-data injection attacks on power system state estimation. IEEE Trans. Smart Grid 2014, 5, 1216–1227. [Google Scholar] [CrossRef]
- Foroutan, S.A.; Salmasi, F.R. Detection of false data injection attacks against state estimation in smart grids based on a mixture Gaussian distribution learning method. IET Cyber-Phys. Syst. Theory Appl. 2017, 2, 161–171. [Google Scholar] [CrossRef]
- Manandhar, K.; Cao, X.; Hu, F.; Liu, Y. Detection of faults and attacks including false data injection attack in smart grid using Kalman filter. IEEE Trans. Control Netw. Syst. 2014, 1, 370–379. [Google Scholar] [CrossRef]
- Liu, L.; Esmalifalak, M.; Ding, Q.; Emesih, V.A.; Han, Z. Detecting false data injection attacks on power grid by sparse optimization. IEEE Trans. Smart Grid 2014, 5, 612–621. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, G.; Scala, M.L.; Dong, Z.Y.; Chen, C.; Wang, J. Short-term state forecasting-aided method for detection of smart grid general false data injection attacks. IEEE Trans. Smart Grid 2017, 8, 1580–1590. [Google Scholar] [CrossRef]
- Xu, R.; Wang, R.; Guan, Z.; Wu, L.; Wu, J.; Du, X. Achieving efficient detection against false data injection attacks in smart grid. IEEE Access 2017, 5, 13787–13798. [Google Scholar] [CrossRef]
- Guan, Y.; Ge, X. Distributed attack detection and secure estimation of networked cyber-physical systems against false data injection attacks and jamming attacks. IEEE Trans. Signal Inf. Process. Netw. 2018, 4, 48–59. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Mendis, G.J.; Wei, J. Real-time detection of false data injection attacks in smart Grid: A deep learning-based intelligent mechanism. IEEE Trans. Smart Grid 2017, 8, 2505–2516. [Google Scholar] [CrossRef]
- Adhikari, U.; Morris, T.H.; Pan, S. Applying non-nested generalized exemplars classification for cyber-power event and intrusion detection. IEEE Trans. Smart Grid 2016, 9, 3928–3941. [Google Scholar] [CrossRef]
- Esmalifalak, M.; Liu, L.; Nguyen, N.; Zheng, R.; Han, Z. Detecting stealthy false data injection using machine learning in smart grid. IEEE Syst. J. 2017, 11, 1644–1652. [Google Scholar] [CrossRef]
- Ozay, M.; Esnaola, I.; Vural, F.T.Y.; Kulkarni, S.R.; Poor, H.V. Machine learning methods for attack detection in the smart grid. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1773–1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanna, K.; Panigrahi, B.K.; Joshi, A. AI-based approach to identify compromised meters in data integrity attacks on smart grid. IET Gener. Transmiss. Distrib. 2018, 12, 1052–1066. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Yilmaz, Y.; Wang, X. Quickest detection of false data injection attack in wide-area smart grids. IEEE Trans. Smart Grid 2015, 6, 2725–2735. [Google Scholar] [CrossRef]
- Rawat, D.; Bajracharya, C. Detection of false data injection attacks in smart grid communication systems. IEEE Signal Process. Lett. 2015, 22, 1652–1656. [Google Scholar] [CrossRef]
- Rana, M.M.; Li, L.; Su, S.W. Cyber-attack protection and control of microgrids. IEEE/CAA J. Autom. Sin. 2017, 5, 602–609. [Google Scholar] [CrossRef]
- Chaojun, G.; Jirutitijaroen, P.; Motani, M. Detecting false data injection attacks in AC state estimation. IEEE Trans. Smart Grid 2015, 6, 2476–2483. [Google Scholar] [CrossRef]
- Liu, T.; Sun, Y.; Liu, Y.; Gui, Y.; Zhao, Y.; Wang, D.; Shen, C. Abnormal traffic-indexed state estimation: A cyber-physical fusion approach for smart grid attack detection. Future Gener. Comput.Syst. 2015, 49, 94–103. [Google Scholar] [CrossRef]
- Tian, J.; Tan, R.; Guan, X.; Liu, T. Enhanced hidden moving target defense in smart grids. IEEE Trans. Smart Grid 2018, 10, 2208–2223. [Google Scholar] [CrossRef]
- Chlela, M.; Mascarella, D.; Joos, G.; Kassouf, M. Cyber-resilient control of inverter based microgrids. In Proceedings of the 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington, DC, USA, 7–9 December 2016; pp. 841–845. [Google Scholar]
- Pasqualetti, F.; Dörfler, F.; Bullo, F. Attack detection and identification in cyber-physical systems. IEEE Trans. Autom. Control 2013, 58, 2715–2729. [Google Scholar] [CrossRef] [Green Version]
- Ntalampiras, S. Detection of integrity attacks in cyber-physical critical infrastructures using ensemble modeling. IEEE Trans. Ind. Inform. 2015, 11, 104–111. [Google Scholar] [CrossRef]
- Fawzi, H.; Tabuada, P.; Diggavi, S. Secure estimation and control for cyber-physical systems under adversarial attacks. IEEE Trans. Autom. Control 2014, 59, 1454–1467. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Kar, S.; Moura, J.M. Cyber-physical systems: Dynamic sensor attacks and strong observability. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, 19–24 April 2015; pp. 1752–1756. [Google Scholar]
- Mo, Y.; Chabukswar, R.; Sinopoli, B. Detecting integrity attacks on SCADA systems. IEEE Trans. Control Syst. Technol. 2014, 22, 1396–1407. [Google Scholar]
- Chen, Y.; Kar, S.; Moura, J.M. Dynamic attack detection in cyber physical systems with side initial state information. IEEE Trans. Autom. Control 2016, 62, 4618–4624. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Liu, X.P.; el Saddik, A. Denial-of-service (DOS) attacks on load frequency control in smart grids. In Proceedings of the 2013 IEEE PES Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 24–27 February 2013; pp. 1–6. [Google Scholar]
- Liu, S.; Liu, P.X.; Wang, X. Effects of cyber-attacks on islanded microgrid frequency control. In Proceedings of the 2016 IEEE 20th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Nanchang, China, 4–6 May 2016; pp. 461–464. [Google Scholar]
- Zhu, M.; Martinez, S. Discrete-time dynamic average consensus. Automatica 2010, 46, 322–329. [Google Scholar] [CrossRef]
- Siddharth, S.; Manimaran, G. Model-based attack detection and mitigation for automatic generation control. IEEE Trans. Smart Grid 2014, 5, 580–591. [Google Scholar]
- Jin, D.; Li, Z.; Hannon, C.; Chen, C.; Wang, J.; Shahidehpour, M.; Lee, C.W. Toward a Cyber Resilient and Secure Microgrid Using Software-Defined Networking. IEEE Trans. Smart Grid 2017, 8, 2494–2504. [Google Scholar] [CrossRef]
Descriptions | Titles | ||||||
---|---|---|---|---|---|---|---|
AMI-SEC | NERC CIP | NISTIR 7628 | IEC 62351 | ISO/IEC 27001 27002 | GB/T 22239 | NIST SP 800-82 | |
Critical Cyber Asset Identification | ✘ | ✓ | ✓ | ✘ | ✓ | ✓ | ✓ |
Security Management Controls | ✘ | ✓ | ✓ | ✘ | ✓ | ✘ | ✓ |
Personnel and Training | ✘ | ✓ | ✘ | ✘ | ✓ | ✓ | ✘ |
Electronic Security Perimeters | ✘ | ✓ | ✓ | ✘ | ✓ | ✘ | ✓ |
Physical Security of Critical Cyber Assets | ✘ | ✓ | ✓ | ✘ | ✓ | ✓ | ✓ |
Systems Security Management | ✓ | ✓ | ✓ | ✘ | ✓ | ✓ | ✓ |
Incident Reporting and Response Planning | ✘ | ✓ | ✓ | ✘ | ✘ | ✓ | ✓ |
Recovery Plans for Critical Cyber Assets | ✘ | ✓ | ✓ | ✘ | ✘ | ✓ | ✓ |
Security guidance for AMI systems | ✓ | ✘ | ✘ | ✘ | ✘ | ✘ | ✘ |
Privacy and the Smart Grid | ✘ | ✘ | ✓ | ✘ | ✘ | ✘ | ✓ |
Security of Power System Information Exchange | ✓ | ✘ | ✓ | ✓ | ✘ | ✘ | ✘ |
Cyber-attacks in Smart Microgrids | Impacts of Cyber-Attacks | Economic Impacts |
|
Physical/Technical Impacts |
| ||
Constructions of Cyber-Attacks (main attack targets) | Attacks on State Estimation |
| |
Attacks on Voltage Control |
| ||
Attacks on Frequency Control |
| ||
Attacks on Protection System |
| ||
Defensive Strategies Against Cyber-Attacks | Strategies Based on Protection |
| |
Strategies Based on Detection/Mitigation |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nejabatkhah, F.; Li, Y.W.; Liang, H.; Reza Ahrabi, R. Cyber-Security of Smart Microgrids: A Survey. Energies 2021, 14, 27. https://doi.org/10.3390/en14010027
Nejabatkhah F, Li YW, Liang H, Reza Ahrabi R. Cyber-Security of Smart Microgrids: A Survey. Energies. 2021; 14(1):27. https://doi.org/10.3390/en14010027
Chicago/Turabian StyleNejabatkhah, Farzam, Yun Wei Li, Hao Liang, and Rouzbeh Reza Ahrabi. 2021. "Cyber-Security of Smart Microgrids: A Survey" Energies 14, no. 1: 27. https://doi.org/10.3390/en14010027
APA StyleNejabatkhah, F., Li, Y. W., Liang, H., & Reza Ahrabi, R. (2021). Cyber-Security of Smart Microgrids: A Survey. Energies, 14(1), 27. https://doi.org/10.3390/en14010027