Optimal SoC Balancing Control for Lithium-Ion Battery Cells Connected in Series
Abstract
:1. Introduction
2. Modified Bidirectional Cuk Converter for SoC Balancing
2.1. Conventional Bidirectional Cuk Converter-Based Circuit
2.2. Modified Bidirectional Cuk Converter-Based Circuit
3. Dynamic Model of the Proposed SoC Balancing Control System
4. Optimal SoC Balancing Control for Series-Connected Lithium-Ion Battery Cells
4.1. Establishing the Optimal SoC Balancing Control Problem
4.2. Solving the Optimal SoC Balancing Control Problem Using SQP
4.3. Selection of the Initial Points for the Optimal Problem-Solving Process
else |
else |
end |
end |
end |
5. Experimental Results
5.1. Experimental Setup and Scenarios
5.2. Scenario 1: No Charging/Discharging
5.3. Scenario 2: Discharging with Is = 0.3A
5.4. Scenario 3: Alternate Charging and Discharging
5.5. Verification of Initial Set Point Selection Algorithm
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, M.; Liu, Y.; Xiao, B.; Yang, S.; Wang, Z.; Han, H. An analytical model for the transverse permeability of gas diffusion layer with electrical double layer effects in proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2018, 43, 17880–17888. [Google Scholar] [CrossRef]
- Liang, M.; Fu, C.; Xiao, B.; Luo, L.; Wang, Z. A fractal study for the effective electrolyte diffusion through charged porous media. Int. J. Heat Mass Transf. 2019, 137, 365–371. [Google Scholar] [CrossRef]
- Ju, F.; Deng, W.; Li, J. Performance Evaluation of Modularized Global Equalization System for Lithium-Ion Battery Packs. IEEE Trans. Autom. Sci. Eng. 2015, 13, 1–11. [Google Scholar] [CrossRef]
- Warner, J. Lithium-Ion Battery Packs for EVs; Elsevier BV: Amsterdam, The Netherlands, 2014; pp. 127–150. [Google Scholar]
- Yuan, C.; Deng, Y.; Li, T.; Yang, F. Manufacturing energy analysis of lithium ion battery pack for electric vehicles. CIRP Ann. 2017, 66, 53–56. [Google Scholar] [CrossRef]
- Ding, Y.; Cano, Z.P.; Yu, A.; Lu, J.; Chen, Z. Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochem. Energy Rev. 2019, 2, 1–28. [Google Scholar] [CrossRef]
- Rivera-Barrera, J.P.; Muñoz-Galeano, N.; Sarmiento-Maldonado, H.O. SoC Estimation for Lithium-ion Batteries: Review and Future Challenges. Electronics 2017, 6, 102. [Google Scholar] [CrossRef] [Green Version]
- How Lithium Ion Batteries in EVs Catch Fire. Available online: https://medium.com/the-innovation/how-lithium-ion-batteries-in-evs-catch-fire-9d166c5b3af1 (accessed on 20 February 2021).
- Wu, T.; Ji, F.; Liao, L.; Chang, C. Voltage-SOC balancing control scheme for series-connected lithium-ion battery packs. J. Energy Storage 2019, 25, 100895. [Google Scholar] [CrossRef]
- Stuart, T.; Zhu, W. Fast equalization for large lithium ion batteries. IEEE Aerosp. Electron. Syst. Mag. 2009, 24, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Mei, X.; Wang, J. A High Power Low-Cost Balancing System for Battery Strings. Energy Procedia 2019, 158, 2948–2953. [Google Scholar] [CrossRef]
- Kim, M.-Y.; Kim, J.-W.; Kim, C.-H.; Cho, S.-Y.; Moon, G.-W. Automatic charge equalization circuit based on regulated voltage source for series connected lithium-ion batteries. In Proceedings of the 8th International Conference on Power Electronics-ECCE Asia, Jeju, Korea, 30 May–3 June 2011; pp. 2248–2255. [Google Scholar]
- Daowd, M.; Antoine, M.; Omar, N.; Bossche, P.V.D.; Van Mierlo, J. Single Switched Capacitor Battery Balancing System Enhancements. Energies 2013, 6, 2149–2174. [Google Scholar] [CrossRef] [Green Version]
- Baughman, A.C.; Ferdowsi, M. Double-Tiered Switched-Capacitor Battery Charge Equalization Technique. IEEE Trans. Ind. Electron. 2008, 55, 2277–2285. [Google Scholar] [CrossRef]
- Yarlagadda, S.; Hartley, T.T.; Husain, I. A Battery Management System Using an Active Charge Equalization Technique Based on a DC/DC Converter Topology. IEEE Trans. Ind. Appl. 2013, 49, 2720–2729. [Google Scholar] [CrossRef]
- Park, S.-H.; Kim, T.-S.; Park, J.-S.; Moon, G.-W.; Yoon, M.-J. A new battery equalizer based on buck-boost topology. In Proceedings of the 2007 7th International Conference on Power Electronics, Daegu, Korea, 22–26 October 2007; pp. 962–965. [Google Scholar]
- Lee, Y.-S.; Duh, C.-Y.; Chen, G.-T.; Yang, S.-C. Battery equalization using bi-directional cuk converter in DCVM operation. In Proceedings of the 2005 IEEE 36th Power Electronics Specialists Conference, Recife, Brazil, 16 June 2005; pp. 765–771. [Google Scholar]
- Moghaddam, A.F.; Bossche, A.V.D. A Ćuk Converter Cell Balancing Technique by Using Coupled Inductors for Lithium-Based Batteries. Energies 2019, 12, 2881. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Ćuk, S. A high efficiency 1.8 kW battery equalizer. In Proceedings of the Eighth Annual Applied Power Electronics Conference and Exposition, San Diego, CA, USA, 7–11 March 1993; pp. 221–227. [Google Scholar] [CrossRef]
- Moo, C.S.; Hsieh, Y.C.; Tsai, I.S. Charge equalization for series-connected batteries. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 704–710. [Google Scholar] [CrossRef]
- Ma, Y.; Lin, H.; Wang, Z.; Ze, Z. Modified State-of-Charge Balancing Control of Modular Multilevel Converter with Integrated Battery Energy Storage System. Energies 2018, 12, 96. [Google Scholar] [CrossRef] [Green Version]
- Gallardo-Lozano, J.; Romero-Cadaval, E.; Milanes-Montero, M.I.; Guerrero-Martinez, M.A. Battery equalization active methods. J. Power Sources 2014, 246, 934–949. [Google Scholar] [CrossRef]
- Choi, S.-C.; Jeon, J.-Y.; Yeo, T.-J.; Kim, Y.-J.; Kim, D.-Y.; Won, C.-Y. State-of-Charge Balancing Control of a Battery Power Module for a Modularized Battery for Electric Vehicle. J. Electr. Eng. Technol. 2016, 11, 629–638. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.G.; Hu, J.; He, H.; Li, Y.; Xiong, B. Load Current and State of Charge Co-Estimation for Current Sensor-Free Lithium-ion Battery. IEEE Trans. Power Electron. 2021, PP, 1. [Google Scholar] [CrossRef]
- Van, C.N.; Vinh, T.N. Soc Estimation of the Lithium-Ion Battery Pack using a Sigma Point Kalman Filter Based on a Cell’s Second Order Dynamic Model. Appl. Sci. 2020, 10, 1896. [Google Scholar] [CrossRef] [Green Version]
- Sanjaya, M. Switching Power Supplies A to Z; Newnes/Elsevier: Boston, MA, USA, 2006. [Google Scholar]
- Ouyang, Q.; Chen, J.; Xu, C.; Su, H. Cell balancing control for serially connected lithium-ion batteries. In Proceedings of the American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 3095–3100. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S.J. Numerical Optimization, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Büskens, C.; Maurer, H. SQP-methods for solving optimal control problems with control and state constraints: Adjoint variables, sensitivity analysis and real-time control. J. Comput. Appl. Math. 2000, 120, 85–108. [Google Scholar] [CrossRef] [Green Version]
- Mu, M.; Duan, W.S.; Wang, B. Conditional nonlinear optimal perturbation and its applications. Nonlinear Process. Geophys. 2003, 10, 493–501. [Google Scholar] [CrossRef]
Balancing Method | Circuit Components | Characteristics | |
---|---|---|---|
Capacitor based | Switch capacitors [12] | n − 1 capacitors, 2n MOSFETs | - Compares the voltages of cells to control MOSFETs - Balancing time depends on the difference in voltage between adjacent cells - Surge current may occur - Energy balance between cells is incomplete |
Single capacitor [13] | 1 capacitor, 4n MOSFETs | ||
Double-tiered capacitor [14] | 2n − 3 capacitors, 2n MOSFETs | ||
Inductor based | Switched inductor [15] | n − 1 inductors, 2n − 2 MOSFETs | - Compares the reference current with cell current to control MOSFETs - Balancing time depends on the energy to be balanced, faster than capacitor-based balance - Needs more components - Surge current may occur |
Single inductors [16] | 2n+2 MOSFETs, 2n+2 diodes, 1 inductor | ||
Converter based | Cuk converter [17,18,19] | 2n − 2 MOSFETs, 2n − 2 inductors, n − 1 capacitors | - Compares the voltages of two adjacent cells to control MOSFETs - Balancing time depends on the energy to be balanced, faster than inductor-based balance - DC voltage source with 2n − 1 differences is needed to control MOSFETs - Surge current may occur |
Buck–boost converter [20] | n MOSFETs, n diodes, n inductors |
L | C | T | f | ||||
---|---|---|---|---|---|---|---|
0.1 mH | 470 µF | 10 s | 10 kHz | 95% | −0.5A | 1.5A |
Cell 1 | Cell 2 | Cell 3 | Cell 4 | Cell 5 | Cell 6 | Cell 7 | |
---|---|---|---|---|---|---|---|
SoC0 (%) | 90 | 65 | 70 | 30 | 50 | 40 | 80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van, C.N.; Vinh, T.N.; Ngo, M.-D.; Ahn, S.-J. Optimal SoC Balancing Control for Lithium-Ion Battery Cells Connected in Series. Energies 2021, 14, 2875. https://doi.org/10.3390/en14102875
Van CN, Vinh TN, Ngo M-D, Ahn S-J. Optimal SoC Balancing Control for Lithium-Ion Battery Cells Connected in Series. Energies. 2021; 14(10):2875. https://doi.org/10.3390/en14102875
Chicago/Turabian StyleVan, Chi Nguyen, Thuy Nguyen Vinh, Minh-Duc Ngo, and Seon-Ju Ahn. 2021. "Optimal SoC Balancing Control for Lithium-Ion Battery Cells Connected in Series" Energies 14, no. 10: 2875. https://doi.org/10.3390/en14102875
APA StyleVan, C. N., Vinh, T. N., Ngo, M. -D., & Ahn, S. -J. (2021). Optimal SoC Balancing Control for Lithium-Ion Battery Cells Connected in Series. Energies, 14(10), 2875. https://doi.org/10.3390/en14102875