Uncertainty Cost Functions in Climate-Dependent Controllable Loads in Commercial Environments
Abstract
:1. Introduction
2. Material and Methods
2.1. Uncertainty Cost
- Uncertainty Costs for Overestimating
- Uncertainty Costs for Underestimating
2.2. Agents of the Electricity Sector with Stochastic Behavior
2.3. Climate-Dependent Controllable Loads
3. Methodology for Probability Density Estimation
3.1. Parametric Probability Density Functions
3.2. Nonparametric Probability Density Functions
3.2.1. Kernel Density Estimator and Kernel Distribution
- is symmetric.
- .
- .
3.2.2. How the Density Estimator Works
3.2.3. Bandwidth h and Kernel Functions
4. Methodology for Cost of Uncertainty
4.1. Methodology for Cost of Uncertainty from Underestimating Electricity Demand
4.2. Uncertainty Cost for Overestimating Electricity Demand
- Probability distributions able to handle the behavior of controllable loads in a residential, industrial or commercial context, by means of the applications proposed in the literature review are found.
- The characteristic equations of the uncertainty costs of controllable loads by means of the analytical development of integrals of expected value are obtained.
- An efficient energy dispatch that considers optimization of the costs of uncertainty of controllable loads is performed.
5. Simulation and Validation of Uncertainty Cost Functions
5.1. Matlab Kernel Density Estimator
5.2. Monte-Carlo Simulation
- A demand value is established that represents the power programmed by a network operator, normally from an economic dispatch model.
- A Monte Carlo scenario is generated through a random value generated for a random generator according to the probability distribution (Section 2).
- Given the value of the previous point, the value of the available demand is determined.
- In this Monte Carlo scenario, the cost is evaluated: if it is in underestimated, the corresponding equation is used, and, similarly, if it is in overestimated, the corresponding equation is used.
- Steps 2–4 are repeated several times.
- A cost histogram is obtained where all Monte-Carlo scenarios are considered.
- The expected value of the total accumulated cost is calculated, this quantity is the expected value of the uncertainty cost function and it is compared with the analytical value.
6. Data of the Controllable Load in Study
6.1. Climate Dependence
- Multivariate regression
- Exogenous temperature variables
- Trend and seasonality variables
- Autoregression
- Structure of the regression expression
6.2. Building 944 Probability Density Function
7. Results and Discussion
7.1. Case 1
7.2. Case 2
7.3. Case 3
7.4. Analysis of Results
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Al-Sumaiti, A.S.; Hassan, M.A.; Rivera, S.; Salama, M.A.A.; El Moursi, M.; Alsumaiti, T. Stochastic PV Model for Power System Planning Applications. IET Renew. Power Gener. 2019, 13, 3168–3179. [Google Scholar] [CrossRef]
- The Nguyen, H.; Al-Sumaiti, A.S.; Vu, V.P.; Al-Durra, A.; Do, T.D. Optimal Power Tracking of PMSG Based Wind Energy Conversion Systems by Constrained Direct Control with Fast Convergence Rates. Int. J. Electr. Power Energy Syst. 2020, 118, 105807. [Google Scholar] [CrossRef]
- Al-Sumaiti, A.S.; Salama, M.M.A.; El Moursi, M.; Alsumaiti, T.; Marzband, M. Enabling Electricity Access: Revisiting Load Models for AC-Grid Operation—Part I. IET Gener. Transm. Distrib. 2019, 13, 2563–2571. [Google Scholar] [CrossRef] [Green Version]
- Al-Sumaiti, A.S.; Salama, M.M.A.; El Moursi, M.; Alsumaiti, T.; Marzband, M. Enabling electricity access: A comprehensive energy efficient approach mitigating climate/weather variability—Part II. IET Gener. Transm. Distrib. 2019, 13, 2572–2583. [Google Scholar] [CrossRef] [Green Version]
- Al-Sumaiti, A.S.; Ahmed, M.H.; Salama, M.M.A. Residential load management under stochastic weather condition in a developing Country. Electr. Power Compon. Syst. 2014, 42, 1452–1473. [Google Scholar] [CrossRef]
- Tookanlou, M.B.; Marzband, M.; Kyya, J.; Al-Sumaiti, A.; Al Hosani, K. Charging/Discharging strategy for electric vehicles based on bi-level programming approach: San Francisco case study. In Proceedings of the IEEE CPE-POWERENG 2020, Setubal, Portugal, 8–10 July 2020. [Google Scholar]
- Tookanlou, M.B.; Marzband, M.; Al-Sumaiti, A.; Mazza, A. Cost-benefit analysis for multiple agents considering an electric vehicle charging/discharging strategy and grid integration. In Proceedings of the 2020 IEEE 20th Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 16–18 June 2020; pp. 19–24. [Google Scholar]
- Coria, G.E.; Sanchez, A.M.; Al-Sumaiti, A.S.; Rattá, G.A.; Rivera, S.R.; Romero, A.A. A Framework for Determining a Prediction-of-Use Tariff Aimed to Coordinate of Aggregators Plug-in Electric Vehicles. Energies 2019, 12, 4487. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, A.A.; Perdomo, L.; Al-Sumaiti, A.; Rivera, S. Strategy for Charging Electric Vehicles in Office Buildings through Automatic Learning Algorithms; Book Chapter for Upcoming Hardcover Edited Collection of Wiley-Scrivener Publisher Tentatively Entitled Smart Charging Solutions on Hybrid and Electric Vehicle; Sachan, S., Padmanaban, S., Eds.; Wiley: New York, NY, USA, 2020. [Google Scholar]
- Vargas, S.; Rodriguez, D.; Rivera, S. Mathematical Formulation and Numerical Validation of Uncertainty Costs for Controllable Loads; Artículo Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería; Scipedia: Sevilla, Spain, 2019. [Google Scholar]
- Surender, S.; Bijwe, P.; Abhyankar, A. Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period. IEEE Syst. J. 2015, 9, 1440–1451. [Google Scholar] [CrossRef]
- Santos, F.; Arévalo, J.; Rivera, S. Uncertainty Cost Functions for Solar Photovoltaic Generation, Wind Energy, and Plug-In Electric Vehicles: Mathematical Expected Value and Verification by Monte Carlo Simulation. Int. J. Power Energy Convers. 2019, in press. [Google Scholar]
- Molina, F.; Pérez, S.; Rivera, S. Uncertainty Cost Function Formulation in Small Hydropower Plants Inside a Microgrid. Ing. USBMed 2017, 8, 126. [Google Scholar]
- Mehri, R.; Kalantar, M. Multi-objective Scheduling of Electric Vehicles Considering Wind and Demand Uncertainties. In Proceedings of the 2015 Smart Grid Conference (SGC), Tehran, Iran, 22–23 December 2015. [Google Scholar]
- Bernal, J.A.; Neira, J.E.; Rivera, S. Mathematical Uncertainty Cost Functions for Controllable Photo-Voltaic Generators considering Uniform Distributions. WSEAS Trans. Math. 2019, 18, 137–142. [Google Scholar]
- Pardo, A.; Meneu, V.; Valor, E. Temperature and Seasonality Influences on Spanish Electricity Load; Departamento de Economía Financiera y Matemática, Facultad de Economía, Universidad de Valencia: Valencia, Spain, 2002. [Google Scholar]
- Moral-Carcedo, J.; Vicéns-Otero, J. Modelling the Non-Linear Response of Spanish Electricity Demand to Temperature Variations; Departamento Análisis Económico, Universidad Autónoma de Madrid: Madrid, Spain, 2005. [Google Scholar]
- Henley, A.; Peirson, J. Non-Linearities in Electricity Demand and Temperature: Parametric Versus Non Parametric Methods; Oxford Bulletin of Economics and Statistics; Wiley: London, UK, 1997. [Google Scholar]
- Kernel Distribution; MathWorks—Documentation; Matlab: Cambridge, MA, USA, 2021.
- Weglarczyk, S. Kernel Density Estimation and Its Application; Cracow University of Technology, Institute of Water Management and Water Engineering: Warszawska, Poland, 2018. [Google Scholar]
- Zhao, J.H.; Wen, F.; Dong, Z.Y.; Xue, Y.; Wong, K.P. Optimal dispatch of electricvehicles and wind power using enhanced particle swarm optimization. IEEE Trans. Ind. Inform. 2012, 8, 889–899. [Google Scholar] [CrossRef]
- Chang, T. Investigation on frequency distribution of global radiation using different probability density functions. Int. J. Appl. Sci. Eng. 2010, 8, 99–107. [Google Scholar]
- Montanari, R. Criteria for the economic planning of a low power hydroelectric plant. Renew. Energy 2003, 28, 2129–2145. [Google Scholar] [CrossRef]
- Cabus, P. River flow prediction through rainfall–runoff modelling with a probability-distributed model (PDM) in Flanders, Belgium. Agric. Water Manag. 2008, 95, 859–868. [Google Scholar] [CrossRef]
- Medina-Santiago, A.; Pano, A.; Gomez, J.; Jesus-Magaña, J.; Valdez-Ramos, M.; Sosa-Silva, E.; Falcon-Perez, F. Adaptive Model IoT for Monitoring in Data Centers. IEEE Access 2020, 8, 5622–5634. [Google Scholar] [CrossRef]
- Chen, Y.C. Lecture 6: Density Estimation: Histogram and Kernel Density Estimator; STAT 425: Introduction to Nonparametric Statistics; University of Washington: Washington, DC, USA, 2018. [Google Scholar]
- Model Data Using the Distribution Fitter App; MathWorks—Documentation; Matlab: Cambridge, MA, USA, 2021.
- Cancelo, J.R.; Espasa, A. Modelling and Forecasting Daily Series of Electricity Demand; Departamento de Estadística, Investigaciones Económicas, Universidad Carlos III: Madrid, Spain, 1996. [Google Scholar]
- Mujere, N. Flood Frequency Analysis Using the Gumbel Distribution. Int. J. Comput. Sci. Eng. (IJCSE) 2011, 3, 2774–2778. [Google Scholar]
- Martínez, C.A.; Rivera, S. Quadratic Modelling of Uncertainty Costs for Renewable Generation and Its Application on Economic Dispatch; Revista Del Programa De Matemáticas, Facultad de Ciencias Básicas, Universidad del Atlántico: Barranquilla, Colombia, 2018; Volume 3, pp. 36–61. [Google Scholar]
- Torres, J.; Rivera, S. Despacho de Energía óptimo en MúLtiples Periodos Considerando la Incertidumbre de la GeneracióN a Partir de Fuentes Renovables en un Modelo Reducido del Sistema de Potencia Colombiano. Av. Investig. Ing. 2018, 15, 48–58. [Google Scholar]
- Ortiz, M.; Londoño, N. Análisis del Mercado de Contratos del MEM de Colombia Durante el último Fenómeno de El Niño (2015–2016); Escuela de Economía y Finanzas, Departamento de Economía, Universidad EAFIT: Medellin, Colombia, 2017. [Google Scholar]
- Abouabdellah, A.; Bannari, R.; El Kafazi, I. Modeling and forecasting energy demand. In Proceedings of the 2016 International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, 14–17 November 2017. [Google Scholar]
Building | without AR | with AR | p-Value for F-Test | p-Value for t-Test |
---|---|---|---|---|
892 | 0.67119 | 0.699674 | 0.057 | 0 |
944 | 0.909277 | 0.915403 | 0 | 0 |
970 | 0.907186 | 0.930692 | 0.999 | 0 |
982 | 0.89748 | 0.918719 | 0 | 0 |
984 | 0.529493 | 0.717893 | 0.999 | 0 |
1115 | 0.891994 | 0.915112 | 0 | 0 |
1118 | 0.765109 | 0.878194 | 1 | 0 |
1120 | 0.924841 | 0.949972 | 0 | 0 |
1197 | 0.477236 | 0.901832 | 1 | 0 |
No. Simulation | Analytic Functions [$] | Monte-Carlo [$] | Error [%] |
---|---|---|---|
1 | 36,072.6 | 36,137.22 | 0.178829 |
2 | 36,072.6 | 36,050.66 | 0.060865 |
3 | 36,072.6 | 36,039.28 | 0.092459 |
4 | 36,072.6 | 36,090.44 | 0.049432 |
5 | 36,072.6 | 36,098.55 | 0.071874 |
6 | 36,072.6 | 36,008.41 | 0.178269 |
7 | 36,072.6 | 36,092.01 | 0.053771 |
8 | 36,072.6 | 36,029.81 | 0.118759 |
9 | 36,072.6 | 36,152.23 | 0.220251 |
10 | 36,072.6 | 36,007.75 | 0.180094 |
11 | 36,072.6 | 36,081.87 | 0.02568 |
12 | 36,072.6 | 36,126.22 | 0.148435 |
13 | 36,072.6 | 36,189.79 | 0.323822 |
14 | 36,072.6 | 36,073.91 | 0.003618 |
15 | 36,072.6 | 36,051.01 | 0.059894 |
16 | 36,072.6 | 36,076.51 | 0.010837 |
17 | 36,072.6 | 36,120.46 | 0.132505 |
18 | 36,072.6 | 36,073.58 | 0.002728 |
19 | 36,072.6 | 36,030.64 | 0.116449 |
20 | 36,072.6 | 36,037.09 | 0.098528 |
21 | 36,072.6 | 36,127.66 | 0.152397 |
22 | 36,072.6 | 36,103.9 | 0.086697 |
23 | 36,072.6 | 36,080.71 | 0.022481 |
24 | 36,072.6 | 36,095.15 | 0.062464 |
25 | 36,072.6 | 36,082.2 | 0.0266 |
No. Simulation | Analytic Functions [$] | Monte-Carlo [$] | Error [%] |
---|---|---|---|
1 | 7115.163 | 7049.649 | 0.929327 |
2 | 7115.163 | 6999.377 | 1.654234 |
3 | 7115.163 | 7123.705 | 0.119909 |
4 | 7115.163 | 7003.204 | 1.598682 |
5 | 7115.163 | 7054.541 | 0.859343 |
6 | 7115.163 | 7178.322 | 0.879848 |
7 | 7115.163 | 7153.225 | 0.532096 |
8 | 7115.163 | 7220.486 | 1.458668 |
9 | 7115.163 | 7170.19 | 0.767442 |
10 | 7115.163 | 6986.23 | 1.845533 |
11 | 7115.163 | 7074.522 | 0.574472 |
12 | 7115.163 | 7230.857 | 1.599998 |
13 | 7115.163 | 7209.265 | 1.305292 |
14 | 7115.163 | 7134.508 | 0.271147 |
15 | 7115.163 | 7057.038 | 0.823645 |
16 | 7115.163 | 7059.236 | 0.79226 |
17 | 7115.163 | 7189.986 | 1.040647 |
18 | 7115.163 | 7101.062 | 0.198582 |
19 | 7115.163 | 7085.249 | 0.422207 |
20 | 7115.163 | 7069.38 | 0.647635 |
21 | 7115.163 | 7226.585 | 1.541837 |
22 | 7115.163 | 7112.49 | 0.037587 |
23 | 7115.163 | 7136.004 | 0.292049 |
24 | 7115.163 | 7113.682 | 0.020829 |
25 | 7115.163 | 7104.051 | 0.156421 |
No. Simulation | Analytic Functions [$] | Monte-Carlo [$] | Error [%] |
---|---|---|---|
1 | 314,107.4 | 313,879.4 | 0.07265 |
2 | 314,107.4 | 314,280.1 | 0.054924 |
3 | 314,107.4 | 314,133.1 | 0.008178 |
4 | 314,107.4 | 314,038.3 | 0.022014 |
5 | 314,107.4 | 314,319.7 | 0.067513 |
6 | 314,107.4 | 314,210.6 | 0.032829 |
7 | 314,107.4 | 314,169.5 | 0.019739 |
8 | 314,107.4 | 314,103.5 | 0.001266 |
9 | 314,107.4 | 314,069.1 | 0.012208 |
10 | 314,107.4 | 314,275.2 | 0.053363 |
11 | 314,107.4 | 313,977.7 | 0.041311 |
12 | 314,107.4 | 314,042.7 | 0.020603 |
13 | 314,107.4 | 313,985.6 | 0.03882 |
14 | 314,107.4 | 314,227.9 | 0.038319 |
15 | 314,107.4 | 314,052.4 | 0.01752 |
16 | 314,107.4 | 314,166.2 | 0.018694 |
17 | 314,107.4 | 314,226.6 | 0.037919 |
18 | 314,107.4 | 314,059.5 | 0.015256 |
19 | 314,107.4 | 314,039 | 0.021782 |
20 | 314,107.4 | 313,847.1 | 0.08294 |
21 | 314,107.4 | 314,411.9 | 0.096821 |
22 | 314,107.4 | 314,161 | 0.017051 |
23 | 314,107.4 | 314,066.3 | 0.013106 |
24 | 314,107.4 | 313,958.9 | 0.047306 |
25 | 314,107.4 | 314,226 | 0.037736 |
Case | Average Error [%] | Mean | Variance | Std Dev. |
---|---|---|---|---|
1 | 0.071818 | 0.090601 | 0.005621 | 0.076522 |
2 | 0.564646 | 0.650946 | 0.354767 | 0.607905 |
3 | 0.016921 | 0.017571 | 0.000351 | 0.019133 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Losada, D.; Al-Sumaiti, A.; Rivera, S. Uncertainty Cost Functions in Climate-Dependent Controllable Loads in Commercial Environments. Energies 2021, 14, 2885. https://doi.org/10.3390/en14102885
Losada D, Al-Sumaiti A, Rivera S. Uncertainty Cost Functions in Climate-Dependent Controllable Loads in Commercial Environments. Energies. 2021; 14(10):2885. https://doi.org/10.3390/en14102885
Chicago/Turabian StyleLosada, Daniel, Ameena Al-Sumaiti, and Sergio Rivera. 2021. "Uncertainty Cost Functions in Climate-Dependent Controllable Loads in Commercial Environments" Energies 14, no. 10: 2885. https://doi.org/10.3390/en14102885
APA StyleLosada, D., Al-Sumaiti, A., & Rivera, S. (2021). Uncertainty Cost Functions in Climate-Dependent Controllable Loads in Commercial Environments. Energies, 14(10), 2885. https://doi.org/10.3390/en14102885