Transient Cavitation and Friction-Induced Heating Effects of Diesel Fuel during the Needle Valve Early Opening Stages for Discharge Pressures up to 450 MPa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical and Physical Model
- -
- Continuity equation:
- -
- Momentum conservation equation:Here, p denotes the fluid pressure and τ is the viscous stress tensor, defined as follows:
- -
- Energy conservation equation:
- -
- The volume change of cells due to mesh motion can be expressed as:
2.2. Thermodynamic Model: Thermodynamic Properties Derived from the PC-SAFT EoS
2.3. Description of the Examined Injector and Testing Conditions
3. Results
3.1. Cavitation Development during the Early Opening Phase
3.2. Analysis of Fuel Heating and Cooling
3.3. Analysis of the Flow Field and Vortex Structures
3.4. Analysis of Analysis of Erosion Pattern and Erosion Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Environment Programme. Emissions Gap Report 2020. Available online: http://www.unenvironment.org/emissions-gap-report-2020 (accessed on 13 January 2021).
- Exonmobil. 2019 Outlook for Energy. Available online: https://corporate.exxonmobil.com/-/media/Global/Files/outlook-for-energy/2019-Outlook-for-Energy_v4.pdf (accessed on 13 January 2021).
- Lemaire, R.; Faccinetto, A.; Therssen, E.; Ziskind, M.; Focsa, C.; Desgroux, P. Experimental comparison of soot formation in turbulent flames of Diesel and surrogate Diesel fuels. Proc. Combust. Inst. 2009, 32, 737–744. [Google Scholar] [CrossRef]
- Kook, S.; Pickett, L.M. Liquid length and vapor penetration of conventional, Fischer–Tropsch, coal-derived, and surrogate fuel sprays at high-temperature and high-pressure ambient conditions. Fuel 2012, 93, 539–548. [Google Scholar] [CrossRef]
- Hawi, M.; Kosaka, H.; Sato, S.; Nagasawa, T.; Elwardany, A.; Ahmed, M. Effect of injection pressure and ambient density on spray characteristics of diesel and biodiesel surrogate fuels. Fuel 2019, 254, 115674. [Google Scholar] [CrossRef]
- Payri, R.; Viera, J.P.; Pei, Y.; Som, S. Experimental and numerical study of lift-off length and ignition delay of a two-component diesel surrogate. Fuel 2015, 158, 957–967. [Google Scholar] [CrossRef] [Green Version]
- Donkerbroek, A.; Boot, M.; Luijten, C.; Dam, N.; Meulen, J. Flame lift-off length and soot production of oxygenated fuels in relation with ignition delay in a DI heavy-duty diesel engine. Combust. Flame 2011, 158, 525–538. [Google Scholar] [CrossRef]
- Arcoumanis, C.; Gavaises, M.; Argueyrolles, B.; Galzin, F. Modeling of Pressure-Swirl Atomizers for GDI Engines. SAE Tech. Paper Ser. 1999, 108. [Google Scholar] [CrossRef]
- Han, Z.; Uludogan, A.; Hampson, G.J.; Reitz, R.D. Mechanism of Soot and NOx Emission Reduction Using Multiple-Injection in a Diesel Engine. SAE Trans. 1996, 105, 837–852. [Google Scholar]
- Ribeiro, N.M.; Pinto, A.C.; Quintella, C.M.; Da Rocha, G.O.; Teixeira, L.S.G.; Guarieiro, L.L.N.; Rangel, M.D.C.; Veloso, M.C.C.; Rezende, M.J.C.; Da Cruz, R.S.; et al. The Role of Additives for Diesel and Diesel Blended (Ethanol or Biodiesel) Fuels: A Review. Energy Fuels 2007, 21, 2433–2445. [Google Scholar] [CrossRef]
- Payri, F.; Pastor, J.V.; Nerva, J.-G.; Garcia-Oliver, J.M. Lift-Off Length and KL Extinction Measurements of Biodiesel and Fischer-Tropsch Fuels under Quasi-Steady Diesel Engine Conditions. SAE Int. J. Engines 2011, 4, 2278–2297. [Google Scholar] [CrossRef]
- Pickett, L.M.; Siebers, D.L. Soot in diesel fuel jets: Effects of ambient temperature, ambient density, and injection pressure. Combust. Flame 2004, 138, 114–135. [Google Scholar] [CrossRef]
- Nishida, K.; Zhu, J.; Leng, X.; He, Z. Effects of micro-hole nozzle and ultra-high injection pressure on air entrainment, liquid penetration, flame lift-off and soot formation of diesel spray flame. Int. J. Engine Res. 2017, 18, 51–65. [Google Scholar] [CrossRef]
- Riva, G.E.; Reggiori, A.; Daminelli, G. Diesel Spray Combustion Rate Enhancement by Increasing Injection Pressure. SAE Tech. Paper Ser. 1993. [Google Scholar] [CrossRef]
- Vera-Tudela, W.; Haefeli, R.; Barro, C.; Schneider, B.; Boulouchos, K. An experimental study of a very high-pressure diesel injector (up to 5000 bar) by means of optical diagnostics. Fuel 2020, 275, 117933. [Google Scholar] [CrossRef]
- Chahine, G.L.; Kapahi, A.; Choi, J.-K.; Hsiao, C.-T. Modeling of surface cleaning by cavitation bubble dynamics and collapse. Ultrason. Sonochem. 2016, 29, 528–549. [Google Scholar] [CrossRef]
- Koukouvinis, P.; Strotos, G.; Zeng, Q.; Gonzalez-Avila, S.R.; Theodorakakos, A.; Gavaises, M.; Ohl, C.-D. Parametric Investigations of the Induced Shear Stress by a Laser-Generated Bubble. Langmuir 2018, 34, 6428–6442. [Google Scholar] [CrossRef] [Green Version]
- Reitz, R.D. Mechanism of atomization of a liquid jet. Phys. Fluids 1982, 25, 1730. [Google Scholar] [CrossRef]
- Lin, S.P.; Reitz, R.D. Drop and spray formation from a liquid jet. Annu. Rev. Fluid Mech. 1998, 30, 85–105. [Google Scholar] [CrossRef]
- Tamaki, N.; Shimizu, M. Enhancement of Atomization of High Viscous Liquid Jet by Pressure Atomized Type Nozzle. In Proceedings of the Chugoku-Shikoku Branch, Japan Society of Mechanical Engineers, Tokyo, Japan, 9–11 September 2002; pp. 167–168. [Google Scholar]
- Sou, A.; Hosokawa, S.; Tomiyama, A. Effects of cavitation in a nozzle on liquid jet atomization. Int. J. Heat Mass Transf. 2007, 50, 3575–3582. [Google Scholar] [CrossRef] [Green Version]
- Dular, M.; Bachert, B.; Stoffel, B.; Širok, B. Relationship between cavitation structures and cavitation damage. Wear 2004, 257, 1176–1184. [Google Scholar] [CrossRef]
- Zhang, L.; He, Z.; Guan, W.; Wang, Q.; Som, S. Simulations on the cavitating flow and corresponding risk of erosion in diesel injector nozzles with double array holes. Int. J. Heat Mass Transf. 2018, 124, 900–911. [Google Scholar] [CrossRef]
- Gavaises, M. Flow in valve covered orifice nozzles with cylindrical and tapered holes and link to cavitation erosion and engine exhaust emissions. Int. J. Engine Res. 2008, 9, 435–447. [Google Scholar] [CrossRef]
- Payri, R.; Salvador, F.; Gimeno, J.; Zapata, L. Diesel nozzle geometry influence on spray liquid-phase fuel penetration in evaporative conditions. Fuel 2008, 87, 1165–1176. [Google Scholar] [CrossRef]
- Strotos, G.; Koukouvinis, P.; Theodorakakos, A.; Gavaises, M.; Bergeles, G. Transient heating effects in high pressure Diesel injector nozzles. Int. J. Heat Fluid Flow 2015, 51, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Theodorakakos, A.; Strotos, G.; Mitroglou, N.; Atkin, C.; Gavaises, M. Friction-induced heating in nozzle hole micro-channels under extreme fuel pressurisation. Fuel 2014, 123, 143–150. [Google Scholar] [CrossRef]
- Theodorakakos, A.; Mitroglou, N.; Gavaises, M. Simulation of Heating Effects Caused by Extreme Fuel Pressurisation in Cavitating Flows through Diesel Fuel Injectors. In Proceedings of the 8th International Symposium on Cavitation, Singapore, 13–16 August 2012; pp. 520–526. [Google Scholar]
- Salemi, R.; Koukouvinis, P.; Strotos, G.; McDavid, R.; Wang, L.; Li, J.; Marengo, M.; Gavaises, M. Evaluation of friction heating in cavitating high pressure Diesel injector nozzles. In Proceedings of the 9th International Symposium on Cavitation, Lausanne, Switzerland, 6–10 December 2015. [Google Scholar]
- Strotos, G.; Koukou, P.; Theodorakakos, A.; Gavaises, M. Quantification of Friction-induced Heating in tapered Diesel orifices. In Proceedings of the SIA International Conference on Diesel Powertrains, Rouen, France, 21–22 May 2014. [Google Scholar]
- Kolev, N.I. Thermodynamic and transport properties of diesel fuel. In Multiphase Flow Dynamics 3; Springer: Berlin/Heidelberg, Germany, 2007; pp. 269–302. [Google Scholar]
- Rokni, H.B.; Moore, J.D.; Gupta, A.; McHugh, M.A.; Gavaises, M. Entropy scaling based viscosity predictions for hydrocarbon mixtures and diesel fuels up to extreme conditions. Fuel 2019, 241, 1203–1213. [Google Scholar] [CrossRef]
- Rokni, H.B.; Gupta, A.; Moore, J.D.; McHugh, M.A.; Bamgbade, B.A.; Gavaises, M.; Mchugh, M.A. Purely predictive method for density, compressibility, and expansivity for hydrocarbon mixtures and diesel and jet fuels up to high temperatures and pressures. Fuel 2019, 236, 1377–1390. [Google Scholar] [CrossRef]
- Rokni, H.B.; Moore, J.D.; Gupta, A.; McHugh, M.A.; Mallepally, R.R.; Gavaises, M.; Mchugh, M.A. General method for prediction of thermal conductivity for well-characterized hydrocarbon mixtures and fuels up to extreme conditions using entropy scaling. Fuel 2019, 245, 594–604. [Google Scholar] [CrossRef]
- Rodriguez, C.; Rokni, H.B.; Koukouvinis, P.; Gupta, A.; Gavaises, M. Complex multicomponent real-fluid thermodynamic model for high-pressure Diesel fuel injection. Fuel 2019, 257, 115888. [Google Scholar] [CrossRef] [Green Version]
- Koukouvinis, P.; Vidal-Roncero, A.; Rodriguez, C.; Gavaises, M.; Pickett, L. High pressure/high temperature multiphase simulations of dodecane injection to nitrogen: Application on ECN Spray-A. Fuel 2020, 275, 117871. [Google Scholar] [CrossRef]
- Rowane, A.J.; Babu, V.M.; Rokni, H.B.; Moore, J.D.; Gavaises, M.; Wensing, M.; Gupta, A.; McHugh, M.A. Effect of Composition, Temperature, and Pressure on the Viscosities and Densities of Three Diesel Fuels. J. Chem. Eng. Data 2019, 64, 5529–5547. [Google Scholar] [CrossRef]
- Rowane, A.J.; Mallepally, R.R.; Gupta, A.; Gavaises, M.; McHugh, M.A.; Mchugh, M.A. High-Temperature, High-Pressure Viscosities and Densities of n-Hexadecane, 2,2,4,4,6,8,8-Heptamethylnonane, and Squalane Measured Using a Universal Calibration for a Rolling-Ball Viscometer/Densimeter. Ind. Eng. Chem. Res. 2019, 58, 4303–4316. [Google Scholar] [CrossRef] [Green Version]
- Vidal, A.; Rodriguez, C.; Koukouvinis, P.; Gavaises, M.; McHugh, M.A. Modelling of Diesel fuel properties through its surrogates using Perturbed-Chain, Statistical Associating Fluid Theory. Int. J. Engine Res. 2018, 21, 1118–1133. [Google Scholar] [CrossRef] [Green Version]
- Vidal, A.; Kolovos, K.; Gold, M.R.; Pearson, R.J.; Koukouvinis, P.; Gavaises, M. Preferential cavitation and friction-induced heating of multi-component Diesel fuel surrogates up to 450 MPa. Int. J. Heat Mass Transf. 2021, 166, 120744. [Google Scholar] [CrossRef]
- Cristofaro, M.; Edelbauer, W.; Gavaises, M.; Koukouvinis, P. Numerical simulation of compressible cavitating two-phase flows with a pressure-based solver. In Proceedings of the 28th Conference on Liquid Atomization and Spray Systems, Valencia, Spain, 5–8 September 2017. [Google Scholar]
- Cristofaro, M.; Edelbauer, W.; Koukouvinis, P.; Gavaises, M. Large Eddy Simulation of the Internal Injector Flow During Pilot Injection. In Proceedings of the 10th International Symposium on Cavitation, Oxford, UK, 14–17 July 2018. [Google Scholar]
- Cristofaro, M.; Edelbauer, W.; Koukouvinis, P.; Gavaises, M. Influence of Diesel Fuel Viscosity on Cavitating Throttle Flow Simulations under Erosive Operation Conditions. ACS Omega 2020, 5, 7182–7192. [Google Scholar] [CrossRef]
- Cristofaro, M.; Edelbauer, W.; Koukouvinis, P.; Gavaises, M. A numerical study on the effect of cavitation erosion in a diesel injector. Appl. Math. Model. 2020, 78, 200–216. [Google Scholar] [CrossRef]
- Koukouvinis, P.; Karathanassis, I.K.; Gavaises, M. Prediction of cavitation and induced erosion inside a high-pressure fuel pump. Int. J. Engine Res. 2018, 19, 360–373. [Google Scholar] [CrossRef] [Green Version]
- Koukouvinis, P.; Gavaises, M.; Li, J.; Wang, L. Large Eddy Simulation of Diesel injector including cavitation effects and correlation to erosion damage. Fuel 2016, 175, 26–39. [Google Scholar] [CrossRef] [Green Version]
- Devassy, B.M.; Caika, V.; Sampl, P.; Edelbauer, W.; Greif, D. Numerical Investigation of Cavitating Injector Flow Accounting for 3D-Needle Movement and Liquid Compressibility Effects. J. Phys. Conf. Ser. 2015, 656, 012092. [Google Scholar] [CrossRef] [Green Version]
- Battistoni, M.; Grimaldi, C.N. Numerical analysis of injector flow and spray characteristics from diesel injectors using fossil and biodiesel fuels. Appl. Energy 2012, 97, 656–666. [Google Scholar] [CrossRef]
- He, Z.; Zhong, W.; Wang, Q.; Jiang, Z.; Fu, Y. An investigation of transient nature of the cavitating flow in injector nozzles. Appl. Therm. Eng. 2013, 54, 56–64. [Google Scholar] [CrossRef]
- Margot, X.; Hoyas, S.; Fajardo, P.; Patouna, S. A moving mesh generation strategy for solving an injector internal flow problem. Math. Comput. Model. 2010, 52, 1143–1150. [Google Scholar] [CrossRef] [Green Version]
- Giussani, F.; Montorfano, A.; Piscaglia, F.; Onorati, A.; Hélie, J.; Aithal, S. Dynamic VOF Modelling of the Internal Flow in GDI Fuel Injectors. Energy Procedia 2016, 101, 574–581. [Google Scholar] [CrossRef]
- Wu, Y.; Montorfano, A.; Piscaglia, F.; Onorati, A. A Study of the Organized in-Cylinder Motion by a Dynamic Adaptive Scale-Resolving Turbulence Model. Flow Turbul. Combust. 2017, 100, 797–827. [Google Scholar] [CrossRef]
- Örley, F.; Hickel, S.; Schmidt, S.J.; Adams, N. Large-Eddy Simulation of turbulent, cavitating fuel flow inside a 9-hole Diesel injector including needle movement. Int. J. Engine Res. 2016, 18. [Google Scholar] [CrossRef]
- Vasilakis, E.S.; Kyriazis, N.; Koukouvinis, P.; Farhat, M.; Gavaises, M. Cavitation induction by projectile impacting on a water jet. Int. J. Multiph. Flow 2019, 114, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Tan, J.-J.; Cui, D.-M. Study and Application of Overset Unstructured Grid Method. 2010. Available online: https://www.researchgate.net/publication/292558457_Study_and_application_of_overset_unstructured_grid_method (accessed on 17 May 2021).
- Khaware, A.; Gupta, V.K.; Srikanth, K.; Azhar, M. Numerical Simulation of Cavitating Flows using Overset Mesh. In Proceedings of the 4th World Congress on Momentum, Heat and Mass Transfer, Rome, Italy, 10–12 April 2019. [Google Scholar]
- Koci, C.P.; Fitzgerald, R.P.; Ikonomou, V.; Sun, K. The effects of fuel–air mixing and injector dribble on diesel unburned hydrocarbon emissions. Int. J. Engine Res. 2019, 20, 105–127. [Google Scholar] [CrossRef]
- Guventurk, C.; Sahin, M. An Arbitrary Lagrangian Eulerian Formulation with Exact Mass Conservation for the Numerical Simulation of a Rising Bubble. Int. J. Numer. Meth. Eng. 2018, 112. [Google Scholar] [CrossRef]
- Kyriazis, N.; Koukouvinis, P.; Gavaises, M. Numerical investigation of bubble dynamics using tabulated data. Int. J. Multiph. Flow 2017, 93, 158–177. [Google Scholar] [CrossRef]
- Demirdžić, I.; Perić, M. Space conservation law in finite volume calculations of fluid flow. Int. J. Numer. Methods Fluids 1988, 8, 1037–1050. [Google Scholar] [CrossRef]
- Ducros, F.; Franck, N.; Poinsot, T. Wall-Adapting Local Eddy-Viscosity Models for Simulations in Complex Geometries. Numer. Methods Fluid Dyn. 1998, 6, 293–299. [Google Scholar]
- Kolovos, K.; Kyriazis, N.; Koukouvinis, P.; Gavaises, M.; Li, J.Z.; McDavid, R.M. Large-eddy simulation of friction heating and turbulent cavitating flow in a Diesel injector including needle movement. Appl. Energy Combust. Sci. 2020. under review. [Google Scholar]
- Kyriazis, N.; Koukouvinis, P.; Gavaises, M. Modelling cavitation during drop impact on solid surfaces. Adv. Colloid Interface Sci. 2018, 260, 46–64. [Google Scholar] [CrossRef] [Green Version]
- Gross, J.; Sadowski, G. Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules. Ind. Eng. Chem. Res. 2001, 40. [Google Scholar] [CrossRef]
- Gavaises, M.; Murali-Girija, M.; Rodriguez, C.; Koukouvinis, P.; Gold, M.; Pearson, R. Numerical simulation of fuel dribbling and nozzle wall wetting. Int. J. Engine Res. 2021. [Google Scholar] [CrossRef]
- Gold, M.; Pearson, R.; Turner, J.; Sykes, D.; Stetsyuk, V.; De Sercey, G.; Crua, C.; Murali-Girija, M.; Koukouvinis, F.; Gavaises, M. Simulation and Measurement of Transient Fluid Phenomena within Diesel Injection. SAE Int. J. Adv. Curr. Pract. Mobil. 2019, 1, 291–305. [Google Scholar] [CrossRef] [Green Version]
- Santos, E.G.; Shi, J.; Gavaises, M.; Soteriou, C.; Winterbourn, M.; Bauer, W. Investigation of cavitation and air entrainment during pilot injection in real-size multi-hole diesel nozzles. Fuel 2020, 263, 116746. [Google Scholar] [CrossRef]
- Santos, E.G.; Shi, J.; Venkatasubramanian, R.; Hoffmann, G.; Gavaises, M.; Bauer, W. Modelling and prediction of cavitation erosion in GDi injectors operated with E100 fuel. Fuel 2021, 289, 119923. [Google Scholar] [CrossRef]
- Wang, C.; Adams, M.; Jin, T.; Sun, Y.; Röll, A.; Luo, F.; Gavaises, M. An analytical model of diesel injector’s needle valve eccentric motion. Int. J. Engine Res. 2021, 1468087420987367. [Google Scholar] [CrossRef]
- Jaberi, F.A.; Colucci, P.J. Large eddy simulation of heat and mass transport in turbulent flows. Part 1: Velocity field. Int. J. Heat Mass Transf. 2003, 46, 1811–1825. [Google Scholar] [CrossRef]
Unit | Value | |
---|---|---|
Max. Needle radius | mm | 1.711 |
Orifice length | mm | 1.262 |
Orifice diameter of the inlet | mm | 0.370 |
Orifice diameter of the outlet | mm | 0.359 |
Sac volume | mm3 | 1.190 |
K-factor (Din − Dout)/10 | - | 1.1 |
Property | Unit | 180 MPa | 350 MPa | 450 MPa |
---|---|---|---|---|
Inlet Temperature | [K] | 350 | 350 | 350 |
Inlet Density | [kg/m3] | 885.5 | 948.7 | 979.8 |
Outlet pressure | [MPa] | 5 | 5 | 5 |
Test Case | Reynolds Number Needle Seat | Reynolds Number Sac Volume | Reynolds Number Orifice Volume |
---|---|---|---|
180 MPa | ~55,000 | ~40,000 | ~50,000 |
350 MPa | ~63,000 | ~50,000 | ~61,000 |
450 MPa | ~72,000 | ~60,000 | ~70,000 |
Region | Taylor Length Scale 180 MPa | Taylor Length Scale 350 MPa | Taylor Length Scale 450 MPa | Smaller Cell 180 MPa | Smaller Cell 350/450 MPa |
---|---|---|---|---|---|
Needle Seat | 3 μm | 1.6 μm | 1.4 μm | 1 μm | 1 μm |
Sac Volume | 9 μm | 6.2 μm | 5.5 μm | 7 μm | 5 μm |
Orifice | 4.7 μm | 3.8 μm | 3.4 μm | 2 μm | 1.8 μm |
Property | Unit | 180 MPa | 350 MPa | 450 MPa |
---|---|---|---|---|
Mean pressure in sac volume | [MPa] | 150 | 270 | 350 |
Mean density in sac volume | [kg/m3] | 853 | 872 | 890 |
Theoretical mass flow rate | [kg/s] | 0.19 | 0.31 | 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolovos, K.; Koukouvinis, P.; McDavid, R.M.; Gavaises, M. Transient Cavitation and Friction-Induced Heating Effects of Diesel Fuel during the Needle Valve Early Opening Stages for Discharge Pressures up to 450 MPa. Energies 2021, 14, 2923. https://doi.org/10.3390/en14102923
Kolovos K, Koukouvinis P, McDavid RM, Gavaises M. Transient Cavitation and Friction-Induced Heating Effects of Diesel Fuel during the Needle Valve Early Opening Stages for Discharge Pressures up to 450 MPa. Energies. 2021; 14(10):2923. https://doi.org/10.3390/en14102923
Chicago/Turabian StyleKolovos, Konstantinos, Phoevos Koukouvinis, Robert M. McDavid, and Manolis Gavaises. 2021. "Transient Cavitation and Friction-Induced Heating Effects of Diesel Fuel during the Needle Valve Early Opening Stages for Discharge Pressures up to 450 MPa" Energies 14, no. 10: 2923. https://doi.org/10.3390/en14102923
APA StyleKolovos, K., Koukouvinis, P., McDavid, R. M., & Gavaises, M. (2021). Transient Cavitation and Friction-Induced Heating Effects of Diesel Fuel during the Needle Valve Early Opening Stages for Discharge Pressures up to 450 MPa. Energies, 14(10), 2923. https://doi.org/10.3390/en14102923