Analysis of Caprock Tightness for CO2 Enhanced Oil Recovery and Sequestration: Case Study of a Depleted Oil and Gas Reservoir in Dolomite, Poland
Abstract
:1. Introduction
Geological Setting
2. Methods
Relevant Dataset
- Seismic data, which comprises the result of a 3D seismic interpretation of the study area, the structural surface of the top of the reservoir rock (Ca2) in the depth domain, and the map of the thickness of the reservoir rock based on seismic data;
- Well log and lab data;
- Lithostratigraphic profiles and well log data from 10 of the 27 boreholes drilled in the study area with the results of laboratory measurements of petrophysical and static geomechanical parameters performed on the core material;
- Reservoir engineering data (reservoir fluid saturation distribution, pressure distribution, and reservoir fluid thermodynamic (PVT) properties);
- Hydrodynamic well tests (multi-rate and pressure build-up tests);
- Production data (reservoir fluid production rates and totals, and bottom-hole and well-head pressures).
3. Geological Model
3.1. 3D Structural Geological Model
3.2. 3D Modelling of Petrophysical Properties
3.2.1. Density and Porosity Models of Entire Geological Profile
3.2.2. High-Resolution 3D Petrophysical Model of Target Reservoir
4. Geomechanic Model
- –
- and are the minimum horizontal and vertical stresses, respectively;
- –
- is the Biot’s coefficient;
- –
- is the pore pressure;
- –
- is the Poisson’s ratio;
- –
- is the Young’s modulus;
- –
- and are the strains in the direction of the minimum and maximum horizontal stresses, respectively.
4.1. Modelling of Geomechanical Properties
4.1.1. 1D Modelling of Elastic and Strength Properties
4.1.2. 3D Modelling of Elastic and Strength Properties
4.2. Boundary Conditions
5. Dynamic Model
- –
- An initial distribution of reservoir fluids (oil and water) under hydrostatic conditions;
- –
- Reservoir fluid transport properties (relative permeabilities);
- –
- Reservoir fluid (oil) thermodynamic model.
5.1. Reservoir Fluid Distributions
5.2. Transport Properties
5.3. Reservoir Fluid Model
6. Model Calibration
6.1. Calibration Results
6.2. Model Characterisation after Calibration
7. Pressure Evolution
8. Caprock Sealing Analysis
9. Gas Leakage Analysis
- –
- inhomogeneous reservoir rock properties,
- –
- varying depths of the reservoir-caprock boundary,
- –
- inhomogeneity of the CO2 injection process.
10. Summary and Conclusions
- (1)
- General conclusions:
- –
- The method applied in the studies proves the necessity to employ an extended model of the analysed structure, wherein the geomechanical and dynamical simulations allow precise estimations of the threshold pressure and provide information regarding critical locations at the reservoir–caprock boundary where leakage could occur.
- –
- The precise determination of the threshold pressure (with inhomogeneous distribution across the reservoir–caprock boundary) and its evolution with time are crucial factors for estimating the sequestration capacity of the structure.
- –
- The following two correlations are key factors when the sealing properties of the reservoir caprock boundary are evaluated:
- The correlation between the geomechanical state (stress field) and transport properties (permeabilities) of the caprock;
- The correlation between the caprock permeability and threshold pressure at the reservoir-caprock boundary.
- (2)
- Conclusions specific to the analysed geological structure:
- –
- The determined threshold pressure revealed the potential CO2 sequestration capacity of the structure, showing that it could safely store approximately 12 × 109 Sm3 of gas.
- –
- The relatively low (up to 3.6%) excess over the determined sequestration capacity resulted in a very small total CO2 leakage (0.13‰ of the sequestrated volume) up to approximately 100 years of relaxation phase after CO2 injection is complete.
- –
- Most of the leaked CO2 accumulates in the bottom part of the caprock.
- –
- The leakage process does not cease even at the end of the simulated (100 years) relaxation phase.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SCm3 | Standard cubic meter |
ƐH | The strains in the direction of the maximum horizontal stress |
Ɛh | The strains in the direction of the minimum horizontal stress |
p | The material constant |
A1D | The lower Anhydrite of Werra cyclothem |
A1G | The upper Anhydrite of Werra cyclothem |
A2 | The basal Anhydrite of Stassfurt cyclothem |
A2G | Screening Anhydrite of Stassfurt cyclothem |
A3 | The main Anhydrite of Leine cyclothem |
A4D | The lower Anhydrite of Aller cyclothem |
A4G | The upper Anhydrite of Aller cyclothem |
Ca1 | Zechstein limestone of Werra cyclothem |
Ca2 | The main Dolomite of Stassfurt cyclothem |
E | Young’s modulus |
EOR | Enhanced oil recovery method |
FGIT | Total CO2 injection |
FGPT | Total gas production |
FOPT | Total oil production |
FPR | Average reservoir pressure |
FPR | Average reservoir pressure |
Gin | Total CO2 injection of individual wells |
GOR | Gas to oil ratio |
GR | Natural Gamma radiation |
I3 | Salt clay of Leine cyclothem |
k | Permeability of the rock |
k0 | The initial permeability |
M | Molar mass |
Na1 | The oldest Halite of Werra cyclothem |
Na2 | Older Halite of Stassfurt cyclothem |
Na4 | The youngest Halite of Aller cyclothem |
P | Pore pressure |
Pcow | Capillary pressure |
Pc | Critical pressure |
Pth | The threshold pressure |
PVT | Pressure, volume and temperature |
PZ2 | Stassfurt cyclothem |
PZ3 | Leine cyclothem |
PZ4 | Aller cyclothem |
Smax | The maximum available saturations |
Smin | The minimum available saturations |
SRK EoS | Soave–Redlich–Kwong equation of state |
Sw | Water saturation |
Swc | The connate water saturation |
T | Tensile strength |
Tb | Boiling point |
Tc | Critical temperature |
TGS | Truncated Gaussian Simulation algorithm |
UCS | Uniaxial compressive strength |
Vc | Critical volume |
vp | Compressional wave velocity |
vs | Shear wave velocity |
Zc | Critical gas compressibility factor |
α | The Biot’s coefficient |
θow | Oil-water contact angle |
ν | Poisson’s ratio (PR) |
ρ | Rock density (RHOB) |
σeff | Effective stress |
σH | The maximum horizontal stress |
σh | The minimum horizontal stress |
σv | The vertical stress |
σ0 | Initial effective stress |
σow | Interfacial tension at the oil–water interface |
φ | Porosity of the rock |
ω | Eccentricity factor |
References
- Hangx, S.J.T.; Spiers, C.J. Reaction of plagioclase feldspars with CO2 under hydrothermal conditions. Chem. Geol. 2009, 265, 88–98. [Google Scholar] [CrossRef]
- Bang, J.-H.; Chae, S.C.; Lee, S.-W.; Kim, J.-W.; Song, K.; Kim, J.; Kim, W. Sequential carbonate mineralization of desalination brine for CO2 emission reduction. J. CO2 Util. 2019, 33, 427–433. [Google Scholar] [CrossRef]
- Qanbari, F.; Pooladi-Darvish, M.; Tabatabaie, S.H.; Gerami, S. CO2 disposal as hydrate in ocean sediments. J. Nat. Gas Sci. Eng. 2012, 8, 139–149. [Google Scholar] [CrossRef]
- Power, I.M.; Dipple, G.M.; Bradshaw, P.M.; Harrison, A.L. Prospects for CO2 mineralization and enhanced weathering of ultramafic mine tailings from the Baptiste nickel deposit in British Columbia, Canada. Int. J. Greenh. Gas Control 2020, 94, 102895. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, Z.-Q.; Li, X.-D.; Zhang, L.-L.; Chen, A.-C. Assessing the oxidative weathering of pyrite and its role in controlling atmospheric CO2 release in the eastern Qinghai-Tibet Plateau. Chem. Geol. 2020, 543, 119605. [Google Scholar] [CrossRef]
- Li, D.; Saraji, S.; Jiao, Z.; Zhang, Y. CO2 injection strategies for enhanced oil recovery and geological sequestration in a tight reservoir: An experimental study. Fuel 2021, 284, 119013. [Google Scholar] [CrossRef]
- Wójcicki, A. Assessment of Formations and Structures Suitable for Safe CO2 Geological Storage (in Poland) including the Monitoring Plans, Final Report. Rozpoznanie Formacji I Struktur Do Bezpiecznego Geologicznego Składowania CO2 Wraz Z Ich Programem Monitorowania, Raport Końcowy; Strona Projektu: Warsaw, Poland, 2013. Available online: http://skladowanie.pgi.gov.pl (accessed on 25 July 2020).
- Chadwick, A.; Arts, R.; Bernstone, C.; May, F.; Thibeau, S.; Zweigel, P. Best Practice for the Storage of CO2 in Saline Aquifers, Observations and Guidelines from the SACS and CO2STORE Projects; British Geological Survey; Halstan & Co. Ltd.: Amersham, UK, 2008. [Google Scholar]
- Tarkowski, R.; Stopa, J. Tightness of geological structure destined to underground carbon dioxide storage. Gospod. Surowcami Miner. Resour. Manag. 2007, 23, 129–137. [Google Scholar]
- Lubaś, J.; Szott, W. 15-year experience of acid gas storage in the natural gas structure of Borzęcin—Poland. Nafta-Gaz 2010, 66, 333–338. [Google Scholar]
- Edlmann, K.; Haszeldine, S.; McDermott, C.I. Experimental investigation into the sealing capability of naturally fractured shale caprocks to supercritical carbon dioxide flow. Environ. Earth Sci. 2013, 70, 3393–3409. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Dong, M.; Li, S.; Huang, S. CO2 sequestration in depleted oil and gas reservoirs—caprock characterization and storage capacity. Energy Convers. Manag. 2006, 47, 1372–1382. [Google Scholar] [CrossRef]
- Zivar, D.; Foroozesha, J.; Pourafsharyb, P.; Salmanpour, S. Stress dependency of permeability, porosity and flow channels in anhydrite and carbonate rocks. J. Nat. Gas Sci. Eng. 2019, 70, 1–13. [Google Scholar] [CrossRef]
- Hangx, S.; Spiers, C.; Peach, C. The mechanical behavior of anhydrite and the effect of CO2 Injection. Energy Procedia 2009, 1, 3485–3492. [Google Scholar] [CrossRef] [Green Version]
- Jaskowiak, S.M.; Karaczun, K.; Karaczun, M.; Grobelny, A.; Jankowski, H.; Mlynarski, S.; Kuhn, D.; Pokorski, A.; Wagner, R.; Gajewska, I.; et al. Budowa geologiczna niecki szczecińskiej i bloku Gorzowa. Inst. Geol. Czech Acad. Sci. 1979, 96, 178. [Google Scholar]
- Czekański, E.; Kwolek, K.; Mikołajewski, Z. Hydrocarbon fields in the Zechstein Main Dolomite (Ca2) on the Gorzów Block (NW Poland). Przegląd Geol. 2010, 58, 695–703. [Google Scholar]
- Peryt, T.M.; Dyjaczyński, K. An isolated carbonate bank in the Zechstein Main Dolomite basin, western Poland. J. Pet. Geol. 1991, 14, 445–458. [Google Scholar] [CrossRef]
- Protas, A.; Wojtkowiak, Z.; Blok, G. Geologia dolnego cechsztynu. In Przewodnik LXXI Zjazdu Polskiego Towarzystwa Geolog-Icznego; Wydawnictwo Instytutu Naukowo Geologicznego: Poznań, Poland, 2000; ISBN 8388163388. [Google Scholar]
- Jaworowski, K.; Mikołajewski, Z. Oil- and gas-bearing sediments of the Main Dolomite (Ca2) in the Międzychód region: A depositional model and the problem of the boundary between the second and third depositional sequences in the Polish Zechstein Basin. Przegląd Geol. 2007, 55, 1017–1024. [Google Scholar]
- Słowakiewicz, M.; Mikołajewski, Z. Sequence stratigraphy of the Upper Permian Zechstein Main Dolomite carbonates in Western Poland: A new approach. J. Pet. Geol. 2009, 32, 215–234. [Google Scholar] [CrossRef]
- Słowakiewicz, M.; Mikołajewski, Z. Upper Permian Main Dolomite microbial carbonates as potential source rocks for hydrocarbons (W Poland). Mar. Pet. Geol. 2011, 28, 1572–1591. [Google Scholar] [CrossRef]
- Wagner, R. Stratigraphy of Deposits and Evolution of the Zechstein Basin in the Polish Lowlands. Stratygrafia Osadów I Rozwój Basenu Cechsztyńskiego Na Niżu Polskim: Prace Państwowego Instytutu Geologicznego; Państwowy Inst. Geologiczny: Warszawa, Poland, 1994; Volume 146. [Google Scholar]
- Wagner, R.; Peryt, T. Possibility of sequence stratigraphic subdivison of the Zechstein in the Polish Basin. Geol. Q. 1997, 41, 457–474. [Google Scholar]
- Wagner, R.; Dyjaczyński, K.; Papiernik, B.; Peryt, T.M.; Protas, A. Mapa paleogeograficzna dolomitu głównego (Ca2) w Polsce. In Bilans I Potencjał Węglowodorowy Dolomitu Głównego Basenu Permskiego Polski; Kotarba, M.J., Ed.; Archiwum WGGiOOE AGH: Kraków, Poland, 2000. [Google Scholar]
- Terzaghi, K. Stress Conditions for the Failure of Saturated Concrete and Rock. Proc. Am. Soc. Test. Mater. 1945, 45, 181–197. [Google Scholar]
- Mesri, G.; Jones, R.; Adachi, K. Influence of Pore Water Pressure on the Engineering Properties of the Rock; Final Technical Report University I11; RPA-Bureau of Mines: Urbana, IL, USA, 1972. [Google Scholar]
- Thiercelin, M.J.; Plumb, R.A. A Core-Based Prediction of Lithologic Stress Contrasts in East Texas Formations. SPE Form. Eval. 1994, 9, 251–258. [Google Scholar] [CrossRef]
- Bratton, T.; Cooper, I. Wellbore Measurements: Tools, Techniques, and Interpretation. In Advanced Drilling and Well Technology; Aadnoy, B., Cooper, I., Miska, S., Mitchell, R., Payne, M., Eds.; Society of Petroleum Engineers: Dallas, TX, USA, 2009; pp. 443–457. ISBN 978-1-55563-145-1. [Google Scholar]
- Herwanger, J.; Koutsabeloulis, N. Rock Physics for Geomechanics. In Seismic Geomechanics: How to Build and Calibrate Geomechanical Models Using 3D and 4D Seismic Data; EAGE Publications: Houten, The Netherlands, 2011; pp. 181–182. [Google Scholar]
- Sayers, C. Geophysics under Stress: Geomechanical Applications of Seismic and Borehole Acoustic Waves; SEG Distinguished Instructor Short Course; SEG: Tulsa, OK, USA, 2010; pp. 152–154. Available online: https://pubs.geoscienceworld.org/books/book/992/Geophysics-Under-StressGeomechanical-Applications (accessed on 21 May 2021).
- Hoek, E. Rock Mechanics—An Introduction for the Practical Engineer Parts. Min. Mag. 1966, 144, 236–243. [Google Scholar]
- Karaman, K.; Cihangir, B.; Ercikdi, A.; Kesimal, A.; Demirel, S. Utilization of the brazilian test for estimating the uniaxial compressive strength and shear strength parameters. J. S. Afr. Inst. Min. Metall. 2015, 115, 185–192, (Print version ISSN 2225-625). [Google Scholar] [CrossRef]
- Yetkin, M.E.; Simsir, F.; Ozfirat, M.K.; Ozfirat, P.M.; Yenice, H. A fuzzy approach to selecting roof supports in longwall mining. S. Afr. J. Ind. Eng. 2016, 27, 162–177. [Google Scholar] [CrossRef] [Green Version]
- Tajduś, A.; Cała, M. O możliwości powstawania pionowych rozwarstwień stropu nad wyrobiskami komorowymi w lgom. In Mat. Konf. XXV Zimowej Szkoły Mechaniki Górotworu i Geoinżynierii, 2002, Zakopane. Wytyczne Doboru, Wykonywania i Kontroli Obudowy Wyrobisk w Zakładach Górniczych; KGHM PM SA: Lubin, Poland, 2017; (unpublished). [Google Scholar]
- Adach-Pawelus, K.; Butra, J.; Pawelus, D. Ocena Stateczności Wyrobisk Górniczych Za Pomocą Metod Numerycznych, Assessment of the Mining Excavations Stability Using Numerical Methods; Aktualia i Perspektywy Górnictwa: Wrocław, Poland, 2018; p. 7. [Google Scholar]
- Kolano, M.; Flisiak, D. Comparison of geo-mechanical properties of white rock salt and pink rock salt in kłodawa salt diapir. Studia Geotech. Mech. 2013, 35, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Jarosinski, M. Recent tectonic stress field investigations in Poland: A state of the art. Geol. Q. 2006, 50, 303–321. [Google Scholar]
- Davarpanah, A.; Mirshekari, B. Experimental Investigation and Mathematical Modeling of Gas Diffusivity by Carbon Dioxide and Methane Kinetic Adsorption. Ind. Eng. Chem. Res. 2019, 58, 12392–12400. [Google Scholar] [CrossRef]
- Hu, X.; Xie, J.; Cai, W.; Wang, R.; Davarpanah, A. Thermodynamic effects of cycling carbon dioxide injectivity in shale reservoirs. J. Pet. Sci. Eng. 2020, 195, 107717. [Google Scholar] [CrossRef]
- PVTSim 16. Available online: https://www.calsep.com/ (accessed on 25 May 2021).
- Pitzer, K.S. Volumetric and thermodynamic properties of normal fluids. Ind. Eng. Chem. 1958, 77, 3427. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, K.S.; Milter, J.; Sørensen, H. Cubic Equations of State Applied to HT/HP and Highly Aromatic Fluids. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 29 September–2 October 2002; pp. 186–192. [Google Scholar]
- Knapp, H.R.; Doring, R.; Oellrich, L.; Plocker, U.; Prausnitz, J.M. Vapor-Liquid Equilibria for Mix-tures of Low Boiling Substances. Chem. Data Ser. 1982, 6, 570. [Google Scholar]
- Lohrenz, J.; Bray, B.G.; Clark, C.R. Calculating Viscosities of Reservoir Fluids from Their Compo-sitions. J. Pet. Technol. 1964, 10, 171–176. [Google Scholar]
- Christensen, P.L. Regression to Experimental PVT Data. J. Can. Pet. Technol. 1999, 38, 1–9. [Google Scholar] [CrossRef]
- Szott, W.; Pańko, A.; Łętkowski, P.; Malaga, M. Reservoir simulation models of Grotów-Międzychód-Lubiatów-Sowia Góra oil field—in Polish. In Report for PGNiG S.A. Personal Communication, 2007; INiG: Krosno, Poland, 2020. [Google Scholar]
- Davies, P.B. Evaluation of the Role of Threshold Pressure in Controlling Flow of Waste-Generated Gas into Bedded Salt at the Waste Isolation Pilot Plant; The United States Department of Energy: Washington, DC, USA, 1991; pp. 17–19.
- Thomas, L.K.; Katz, D.L.; Tek, M.R. Threshold Pressure Phenomena in Porous Media. Soc. Pet. Eng. J. 1968, 8, 174–184. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Tek, M.R.; Katz, D.L. Threshold Pressure in Gas Storage; American Gas Association: Arlington, VA, USA, 1970. [Google Scholar]
- Shi, T.; Wang, C.Y. Generation of high pore pressure in accretionary prisms: Inferences from the Barbados Subduction Complex. J. Geophys. Res. 1988, 93, 8893–8910. [Google Scholar] [CrossRef]
- Dong, J.-J.; Hsu, J.-Y.; Wu, W.-J.; Shimamoto, T.; Hung, J.-H.; Yeh, E.-C.; Wu, Y.-H.; Sone, H. Stress-dependence of the permeability and porosity of sandstone and shale from TCDP Hole-A. Int. J. Rock Mech. Min. Sci. 2010, 47, 1141–1157. [Google Scholar] [CrossRef]
- Jia, C.-J.; Xu, W.-Y.; Wang, H.-L.; Wang, R.-B.; Yu, J.; Yan, L. Stress dependent permeability and porosity of low-permeability rock. J. Cent. South Univ. 2017, 24, 2396–2405. [Google Scholar] [CrossRef]
- Morrow, C.A.; Shi, L.Q.; Byerlee, J.D. Permeability of fault gouge under confining pressure and shear stress. J. Geophys. Res. Space Phys. 1984, 89, 3193–3200. [Google Scholar] [CrossRef]
- Thayer, P.A. Relationship of Porosity and Permeability to Petrology of the Madison Limestone in Rock Cores from Three Test WeUs in Montana and Wyoming. Geology and Hydrology of the Madison limestone and Associated Rocks in Parts of Montana, Nebraska, North Dakota, South Dakota, and Wyoming; United States Government Printing Office: Washington, DC, USA, 1983.
Parameter [Unit] | Cenozoic (Clay, Sand, Gravel) | Cretaceous (Clayey Shales) | Jurassic (Sandy Shales) | Triassic (Sandstones) | Zechstein | ||||
---|---|---|---|---|---|---|---|---|---|
Rock Salt | Anhydrite | Reservoir MAIN Dolomite | Limestone | Rotliegend (Underburden) | |||||
Young’s modulus [GPa] | 0.5 | 4 | 5.56 | 28.5 | 6.89 | 52.69 | 3D model | 42.06 | 46.19 |
Poisson’s ratio [-] | 0.3 | 0.32 | 0.19 | 0.17 | 0.3 | 0.25 | 3D model | 0.18 | 0.3 |
Density [g/cm3] | 3D model | 3D model | 3D model | 3D model | 3D model | 3D model | 3D model | 2.75 | 2.3 |
Biot’s coefficient [-] | 1 | 1 | 1 | 1 | 0 | 0.10 | 0.7 | 0.8 | 1 |
Porosity [%] | 3D model | 3D model | 3D model | 3D model | 3D model | 3D model | 3D model | 2.99 | 4 |
Unconfined compressive strength (UCS) [MPa] | 2.8 | 48 | 56.98 | 50.7 | 27.33 | 90.3 | 3D model | 14.93 | 50 |
Friction angle [°] | 30 | 32 | 20 | 59 | 29.08 | 64 | 28.6 | 22.8 | 30 |
Dilatation angle [°] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Stress Characteristic Parameter | Assigned Value |
---|---|
Gradient of horizontal stress () [MPa/m] | 0.01707 |
Gradient of [MPa/m] | 0.02134 |
Azimuth of [°] | 6 |
Component | % mol |
---|---|
N2 | 31.588 |
CO2 | 0.612 |
H2S | 5.085 |
C1 | 19.353 |
C2 | 3.567 |
C3–C6 | 11.99 |
C7–C11 | 12.27 |
C12+ | 15.5 |
Component | Critical Temperature Tc [K] | Critical Pressure Pc [bar] | Eccentricity Factor ω | Parameter ΩA | Parameter ΩB | Molar Mass M | Boiling Point Tb [K] | Critical Volume Vc | Critical Gas Compressibility Factor Zc | Parachor |
---|---|---|---|---|---|---|---|---|---|---|
N2 | 126.2 | 33.9 | 0.0400 | 0.4275 | 0.0866 | 28.0 | 77.4 | 0.090 | 0.2905 | 41.0 |
CO2 | 304.2 | 73.8 | 0.2250 | 0.4275 | 0.0866 | 44.0 | 194.7 | 0.094 | 0.2741 | 78.0 |
H2S | 373.2 | 89.4 | 0.1000 | 0.4275 | 0.0866 | 34.1 | 213.5 | 0.099 | 0.2837 | 80.1 |
C1 | 190.6 | 46.0 | 0.0080 | 0.4275 | 0.0866 | 16.0 | 111.6 | 0.099 | 0.2874 | 77.3 |
C2 | 305.4 | 48.8 | 0.0098 | 0.4275 | 0.0866 | 30.1 | 184.6 | 0.148 | 0.2847 | 108.9 |
C3–C6 | 453.2 | 34.7 | 0.2315 | 0.4275 | 0.0866 | 65.4 | 296.9 | 0.299 | 0.2752 | 221.2 |
C7–C11 | 641.1 | 27.3 | 0.3182 | 0.4221 | 0.0866 | 120.6 | 418.2 | 0.631 | 0.3231 | 347.6 |
C12+ | 784.1 | 17.3 | 0.4975 | 0.4221 | 0.0866 | 234.6 | 575.6 | 1.180 | 0.3135 | 626.1 |
N2 | CO2 | H2S | C1 | C2 | C3–C6 | C7–C11 | C12+ | |
---|---|---|---|---|---|---|---|---|
N2 | - | - | - | - | - | - | - | - |
CO2 | −0.0315 | - | - | - | - | - | - | - |
H2S | 0.1696 | 0.0989 | - | - | - | - | - | - |
C1 | 0.0278 | 0.1200 | 0.0800 | - | - | - | - | - |
C2 | 0.0407 | 0.1200 | 0.0852 | 0.0000 | - | - | - | - |
C3–C6 | 0.0808 | 0.1200 | 0.0655 | 0.0000 | 0.0000 | - | - | - |
C7–C11 | 0.0928 | 0.1006 | 0.0006 | 0.0000 | 0.0000 | 0.0000 | - | - |
C12+ | 0.0928 | 0.1006 | 0.006 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | - |
a1 | a2 | a3 | a4 | a5 |
---|---|---|---|---|
0.4703 | −0.1017 | 0.0585 | −0.0408 | 0.0093 |
Parameter | Assumed Value | |
---|---|---|
Coefficient (Equation (8)) | [49] | 2.6 × 10−7 |
Exponent (Equation (8)) | [49] | −0.348 |
Initial permeability [m2] (Equation (9)) | [54] | 9.6 × 10−21 |
Material parameter (Equation (9)) | [13] | 0.6288 |
Scenario | Total Injection/Sequestration Capacity [×109 SCm3] |
---|---|
Basic | 12.01 |
P490 | 12.17 |
P500 | 12.26 |
P510 | 12.38 |
P520 | 12.43 |
Scenario No. | Total Leakage [×106 SCm3] | Total Leakage as Fraction of Injected CO2 [%] |
---|---|---|
P490 | 0.98 | 0.0080 |
P500 | 1.20 | 0.0098 |
P510 | 1.39 | 0.0113 |
P520 | 1.59 | 0.0128 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Słota-Valim, M.; Gołąbek, A.; Szott, W.; Sowiżdżał, K. Analysis of Caprock Tightness for CO2 Enhanced Oil Recovery and Sequestration: Case Study of a Depleted Oil and Gas Reservoir in Dolomite, Poland. Energies 2021, 14, 3065. https://doi.org/10.3390/en14113065
Słota-Valim M, Gołąbek A, Szott W, Sowiżdżał K. Analysis of Caprock Tightness for CO2 Enhanced Oil Recovery and Sequestration: Case Study of a Depleted Oil and Gas Reservoir in Dolomite, Poland. Energies. 2021; 14(11):3065. https://doi.org/10.3390/en14113065
Chicago/Turabian StyleSłota-Valim, Małgorzata, Andrzej Gołąbek, Wiesław Szott, and Krzysztof Sowiżdżał. 2021. "Analysis of Caprock Tightness for CO2 Enhanced Oil Recovery and Sequestration: Case Study of a Depleted Oil and Gas Reservoir in Dolomite, Poland" Energies 14, no. 11: 3065. https://doi.org/10.3390/en14113065
APA StyleSłota-Valim, M., Gołąbek, A., Szott, W., & Sowiżdżał, K. (2021). Analysis of Caprock Tightness for CO2 Enhanced Oil Recovery and Sequestration: Case Study of a Depleted Oil and Gas Reservoir in Dolomite, Poland. Energies, 14(11), 3065. https://doi.org/10.3390/en14113065