Numerical Modeling of CO2 Sequestration within a Five-Spot Well Pattern in the Morrow B Sandstone of the Farnsworth Hydrocarbon Field: Comparison of the TOUGHREACT, STOMP-EOR, and GEM Simulators
Abstract
:1. Introduction
- Although Sun et al. [8] considered water, CO2, and oil in their reactive transport model, their model had some differences with actual field conditions: (1) They did not use the actual fluid injection temperature in the field, but rather the 75 °C temperature in the reservoir, and (2) they used generic mineral reactive surface areas from Pan et al. [5] and Xu et al. [13] rather than reactive surface areas determined from the field properties of the Morrow B. The present study used the field-based fluid injection temperatures and mineral reactive surface areas.
2. Geological Setting
3. Model Construction and Scenarios
3.1. General Model Characteristics
3.2. Model Scenario 1: Injection of CO2 into a Saline Water Aquifer
3.3. Model Scenario 2: Injection of CO2 into a Depleted Hydrocarbon Reservoir
4. Results
4.1. Model Scenario 1
4.1.1. Temperature and Pressure Distributions
4.1.2. Evolution of Pore Fluid and Mineral Composition
4.2. Model Scenario 2
5. Discussion
6. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Balch, R.; McPherson, B.; Grigg, R. Overview of a Large Scale Carbon Capture, Utilization, and Storage Demonstration Project in an Active Oil Field in Texas, USA. Energy Procedia 2016, 114, 5874–5887. [Google Scholar] [CrossRef]
- Balch, R.; McPherson, B. Integrating Enhanced Oil Recovery and Carbon Capture and Storage Projects: A Case Study at Farnsworth Field, Texas. In SPE Western Regional Meeting; OnePetro: Anchorage, AK, USA, 2016. [Google Scholar]
- Ahmmed, B. Numerical Modeling of CO2-Water-Rock Interactions in the Farnsworth, Texas Hydrocarbon Unit, USA. 2015, Volume 3, pp. 54–67. Available online: https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/46985/research.pdf?sequence=2 (accessed on 3 May 2021).
- Xu, T.; Sonnenthal, E.; Spycher, N.; Pruess, K. TOUGHREACT User’s Guide: A Simulation Program for Non-Isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media; V1.2.1-LBNL-55460-2008; Lawrence Berkeley National Lab. (LBNL): Berkeley, CA, USA, 2008; Volume 32, pp. 1–206.
- Pan, F.; McPherson, B.J.; Esser, R.; Xiao, T.; Appold, M.S.; Jia, W.; Moodie, N. Forecasting evolution of formation water chemistry and long-term mineral alteration for GCS in a typical clastic reservoir of the Southwestern United States. Int. J. Greenh. Gas Control 2016, 54, 524–537. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, S.R. Depositional and Diagenetic Controls On Reservoir Heterogeneity: Upper Morrow Sandstone. Master’s Thesis, Farnsworth Unit, Ochiltree County, TX, USA, 2014; pp. 1–233. [Google Scholar]
- Khan, R.H. Evaluation of the geologic CO2 sequestration potential of the Morrow B sandstone in the Farnsworth, Texas hydrocarbon field using reactive transport modeling. Am. Geophys. Union 2017. [Google Scholar] [CrossRef]
- Sun, Q.; Ampomah, W.; Kutsienyo, E.J.; Appold, M.; Adu-Gyamfi, B.; Dai, Z.; Soltanian, M.R. Assessment of CO2 trapping mechanisms in partially depleted oil-bearing sands. Fuel 2020, 278, 118356. [Google Scholar] [CrossRef]
- Nghiem, L.; Sammon, P.; Grabenstetter, J.; Ohkuma, H. Modeling CO2 Storage in Aquifers with a Fully-Coupled Geochemical EOS Compositional Simulator. In SPE/DOE Symposium on Improved Oil Recovery; No. SPE 89474 Modeling; OnePetro: Tulsa, OK, USA, 2004; pp. 1–16. [Google Scholar]
- CMG. GEM Compositional and Unconventional Simulator. 2021. Available online: https://www.cmgl.ca/gem (accessed on 10 August 2021).
- White, M.; McPherson, B.; Grigg, R.; Ampomah, W.; Appold, M. Numerical Simulation of Carbon Dioxide Injection in the Western Section of the Farnsworth Unit. Energy Procedia 2014, 63, 7891–7912. [Google Scholar] [CrossRef] [Green Version]
- Span, R.; Wagner, W. A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa. J. Phys. Chem. Ref. Data 1996, 25, 1509–1596. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Apps, J.A.; Pruess, K. Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep arenaceous formations. J. Geophys. Res. Solid Earth 2003, 108. [Google Scholar] [CrossRef]
- Munson, T.W. Depositional, Diagenetic, and Production History of the upper Morrowan Buckhaults Sandstone, Farnsworth Field Ochiltree County Texas. OCGS-Shale Shak. Dig. XII 1989, XXXX–XXXXI, 2–20. [Google Scholar]
- Heath, J.E.; Dewers, T.A.; Mozley, P.S. Characteristics of the Farnsworth Unit, Ochiltree County; Southwest Partnership CO2 Storage-EOR Project: Ochiltree, TX, USA, 2015. [Google Scholar]
- Ross-Coss, D.; Ampomah, W.; Cather, M.; Balch, R.S.; Mozley, P.; Rasmussen, L. An Improved Approach for Sandstone Reservoir Characterization. In Proceedings of the SPE Western Regional Meeting, Anchorage, AK, USA, 23–26 May 2016. [Google Scholar]
- Trujillo, N.A. Influence of Lithology and Diagenesis on Mechanical and Sealing Properties of the Thirteen Finger Limestone and Upper Morrow Shale, Farnsworth Unit, Ochiltree County, Texas; ProQuest: Ann Abor, MI, USA, 2017. [Google Scholar]
- White, M.D.; Oostrom, M. User Guide: Subsurface Transport Over Multiple Phases. June 2006 Contract: DE-AC05-76RL01830. Available online: https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-15782.pdf (accessed on 20 August 2021).
- Xu, T.; Apps, J.A.; Pruess, K. Numerical simulation of CO2 disposal by mineral trapping in deep aquifers. Appl. Geochem. 2004, 19, 917–936. [Google Scholar] [CrossRef]
- CMG. CMOST User’s Guide: CO2 Sequestration Using GEM. 2018. Available online: https://www.cmgl.ca/training/co2-sequestration-using-gem (accessed on 20 August 2021).
- Ahmmed, B.; Appold, M.S.; Fan, T.; McPherson, B.J.O.L.; Grigg, R.B.; White, M.D. Chemical Effects of Carbon Dioxide Sequestration in the Upper Morrow Sandstone in the Farnsworth, Texas, hydrocarbon unit. Environ. Geosci. 2016, 23, 81–93. [Google Scholar] [CrossRef]
- Palandri, J.L.; Kharaka, Y.K. A Compilation of Rate Parameters of Water-Mineral Interaction Kinectics for Application to Geochemical Modelling. U.S. Geol. Surv. Open File Rep. 2004, 271, 1–70. [Google Scholar]
- Gunda, D.; Ampomah, W.; Grigg, R.; Balch, R. Reservoir Fluid Characterization for Miscible Enhanced Oil Recovery. Carbon Management Technology Conference; OnePetro: Sugarland, TX, USA, 2015. [Google Scholar]
- Battistelli, A.; Calore, C.; Pruess, K. The simulator TOUGH2/EWASG for modelling geothermal reservoirs with brines and non-condensible gas. Geothermics 1997, 26, 437–464. [Google Scholar] [CrossRef]
- Spycher, N.; Pruess, K. CO2-H2O Mixtures in the Geological Sequestration of CO2. II. Partitioning in Chloride Brines at 12–100 °C and up to 600 bar. Geochim. Cosmochim. Acta 2005, 69, 3309–3320. [Google Scholar] [CrossRef]
- Harvey, A. Semiempirical correlation for Henry’s constants over large temperature ranges. AIChE J. 1996, 42, 1491–1494. [Google Scholar] [CrossRef]
- CMG-GEM. GHG-GEM Users Guide: GHG Option—Damping Factor for Reactions Other than Chemical *MRDAMP-ALL, *MRDAMP. 2020. Available online: https://www.cmgl.ca/resources (accessed on 20 August 2021).
Matrix compressibility (1/Pa) | |
Diffusion coefficient (m2/s) | |
| |
Rock matrix density (kg/m3) | |
Porosity | |
Intrinsic Permeability | |
| |
Relative Permeability (Corey, 1954 model) | |
| |
Capillary Pressure | None |
Salt mass fraction in pore water | |
Initial aqueous phase saturation | |
| |
Initial gas-phase saturation | |
Initial oil-phase saturation (Water-CO2-oil models) | |
Initial field temperature (°C) | |
Injection pressure (MPa) | |
Injection temperature (°C) | |
Production well screen pressure (MPa) | |
WAG Cycle Ratio (Months) | |
|
Primary Aqueous Species (mol/L): | |||
---|---|---|---|
Ca2+ | 8.25 × 10−4 | Ba2+ | 1.00 × 10−5 |
H+ | 1.00 × 10−7 | 2.80 × 10−7 | |
K+ | 1.83 × 10−4 | 1.35 × 10−4 | |
Mg2+ | 5.10 × 10−4 | Cl− | 5.90 × 10−2 |
Na+ | 6.18 × 10−2 | 1.33 × 10−2 | |
Fe2+ | 3.60 × 10−13 | SiO2 | 6.69 × 10−4 |
Minerals | Initial Volume Fraction % | Reactive Surface Area cm2/g | Neutral pH Mechanism | |
---|---|---|---|---|
Rates Constant 25 °C [mol m−2 s−1] | Activation Energy [kJ mol−1] | |||
Albite | 17.973 | 11.45 | 67.83 | |
Calcite | 0.4279 | 11.07 | 23.50 | |
Clinochlore | 0.8559 | 11.41 | 62.76 | |
Quartz | 58.6261 | 9.80 | 87.70 | |
Illite | 0.5991 | 43.63 | 35.00 | |
Kaolinite | 7.018 | 46.15 | 62.76 | |
Dolomite | 0 | 10.49 | 41.80 | |
Magnesite | 0 | 10 | 23.50 | |
Smectite-ca | 0 | 9.8 | 58.62 | |
Siderite | 0 | 9.8 | 41.80 | |
Ankerite | 0 | 9.84 | 41.80 |
Component | Mole Fraction | Molar Weight (kg/kmol) | Critical Temperature (K) | Critical Pressure (bar) |
---|---|---|---|---|
CO2 | 0.0 | 44.01 | 304.21 | 73.77 |
CH4 | 0.385 | 16.04 | 188.85 | 46.00 |
C2 | 0.039 | 30.07 | 197.45 | 48.83 |
C3 | 0.025 | 44.10 | 247.19 | 42.44 |
C4+ | 0.028 | 58.12 | 289.89 | 37.76 |
C5+ | 0.020 | 72.15 | 328.13 | 33.76 |
C6 | 0.018 | 86.18 | 365.70 | 29.68 |
HC1 | 0.335 | 189.95 | 577.54 | 22.48 |
HC2 | 0.150 | 545.65 | 864.34 | 16.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kutsienyo, E.J.; Appold, M.S.; White, M.D.; Ampomah, W. Numerical Modeling of CO2 Sequestration within a Five-Spot Well Pattern in the Morrow B Sandstone of the Farnsworth Hydrocarbon Field: Comparison of the TOUGHREACT, STOMP-EOR, and GEM Simulators. Energies 2021, 14, 5337. https://doi.org/10.3390/en14175337
Kutsienyo EJ, Appold MS, White MD, Ampomah W. Numerical Modeling of CO2 Sequestration within a Five-Spot Well Pattern in the Morrow B Sandstone of the Farnsworth Hydrocarbon Field: Comparison of the TOUGHREACT, STOMP-EOR, and GEM Simulators. Energies. 2021; 14(17):5337. https://doi.org/10.3390/en14175337
Chicago/Turabian StyleKutsienyo, Eusebius J., Martin S. Appold, Mark D. White, and William Ampomah. 2021. "Numerical Modeling of CO2 Sequestration within a Five-Spot Well Pattern in the Morrow B Sandstone of the Farnsworth Hydrocarbon Field: Comparison of the TOUGHREACT, STOMP-EOR, and GEM Simulators" Energies 14, no. 17: 5337. https://doi.org/10.3390/en14175337
APA StyleKutsienyo, E. J., Appold, M. S., White, M. D., & Ampomah, W. (2021). Numerical Modeling of CO2 Sequestration within a Five-Spot Well Pattern in the Morrow B Sandstone of the Farnsworth Hydrocarbon Field: Comparison of the TOUGHREACT, STOMP-EOR, and GEM Simulators. Energies, 14(17), 5337. https://doi.org/10.3390/en14175337