Time-Lapse Integration at FWU: Fluids, Rock Physics, Numerical Model Integration, and Field Data Comparison
Abstract
:1. Introduction
1.1. Farnsworth Site Background
1.2. Literature Review
2. Materials and Methods
2.1. General Methodology
2.2. FWU Geological Model
2.3. FWU Numerical Simulation Model
2.3.1. Compositional Fluid Model
2.3.2. Numerical Simulation Model
2.4. Rock Physics
2.4.1. Properties of Hycrocarbon-CO2-Brine Mixtures—Analytical Study
2.4.2. Properties of Hydrocarbon-CO2-Brine Mixtures—Numerical Model Integration
2.4.3. Fluid Substitution
2.5. Time-Lapse Seismic Surveys
2.6. Numerical Simulaton Model Integration
3. Results
3.1. WAG Operational Factors
3.2. Analytical Model Rock Physics Investigations
3.3. Model Rock Physics from Compositional Simulator
3.4. Comparison with Time-Lapse Measurements
4. Discussion and Conclusions
5. Avenues for Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Balch, R.S.; Mcpherson, B.; Grigg, R. Overview of a large scale carbon capture, utilization, and storage demonstration project in an active oil field in Texas, USA. In Proceedings of the 13th International Conference on Greenhouse Gas Control Technologies, Lausanne, Switzerland, 14–18 November 2016. [Google Scholar]
- Christensen, J.R.; Stenby, E.H.; Skauge, A. Review of WAG field experience. SPE Reserv. Eval. Eng. 2001, 4, 97–106. [Google Scholar] [CrossRef]
- Johnston, D.H. Practical Applications of Time-Lapse Seismic Data; Society of Exploration Geophysicists, 2013; p. 289. Available online: https://library.seg.org/doi/epdf/10.1190/1.9781560803126 (accessed on 27 February 2021).
- Lumley, D.; Sherlock, D.; Daley, T.; Huang, L.; Lawton, D.; Masters, R.; Verliac, M.; White, D. Highlights of the 2009 SEG Summer Research Workshop on CO2 Sequestration; The Leading Edge, 2010; Volume 29, pp. 138–145. Available online: https://library.seg.org/doi/10.1190/tle29020138.1 (accessed on 27 February 2021).
- Ghosh, R.; Sen, M.K.; Vedanti, N. Quantitative interpretation of CO2 plume from Sleipner (North Sea) using post-stack inversion and rock physics modeling. Int. J. Greenh. Gas Control 2015, 32, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Chadwick, R.A.; Williams, G.A.; Falcon-Suarez, I. Forensic mapping of seismic velocity heterogeneity in a CO2 layer at the Sleipner CO2 storage operation, North Sea, using time-lapse seismics. Int. J. Greenh. Gas Control 2019, 90, 102793. [Google Scholar] [CrossRef]
- Raknes, E.B.; Weibull, W.; Arntsen, B. Seismic imaging of the carbon dioxide gas cloud at Sleipner using 3D elastic time-lapse full waveform inversion. Int. J. Greenh. Gas Control 2015, 42, 26–45. [Google Scholar] [CrossRef] [Green Version]
- Roacha, L.; White, D.J. Evolution of a deep CO2 plume from time-lapse seismic imaging at the Aquistore storage site, Saskatchewan, Canada. Int. J. Greenh. Gas Control 2018, 74, 79–86. [Google Scholar] [CrossRef]
- White, D.J.; Roach, L.A.N.; Roberts, B. Time-lapse seismic performance of a sparse permanent array: Experience from the Aquistore CO2 storage site. Geophysics 2015, 80, WA35–WA48. [Google Scholar] [CrossRef]
- Gorecki, C. Plains CO2 Reduction Partnership Phase III Final Report (No. DOE-EERC-42592); Energy & Environmental Research Center University of North Dakota, 2019. Available online: https://www.osti.gov/biblio/1580755-plains-co2-reduction-partnership-phase-iii-final-report (accessed on 27 February 2021).
- Gollakota, S.; McDonald, S. Commercial-Scale CCS Project in Decatur, Illinois—Construction Status and Operational Plans for Demonstration. Energy Procedia 2014, 63, 5986–5993. [Google Scholar] [CrossRef] [Green Version]
- Finley, R.J.; Frailey, S.M.; Leetaru, H.E.; Senel, O.; Couëslan, M.L.; Scott, M. Early operational experience at a one-million tonne CCS demonstration project, decatur, Illinois, USA. Energy Procedia 2013, 37, 6149–6155. [Google Scholar] [CrossRef] [Green Version]
- Senel, O.; Will, R.; Butsch, R.J. Integrated reservoir modeling at the Illinois Basin—Decatur Project. Greenh. Gases Sci. Technol. 2014, 4, 662–684. [Google Scholar] [CrossRef]
- Ivanova, A.; Kashubin, A.; Juhojuntti, N.; Kummerow, J.; Henninges, J.; Juhlin, C.; Lüth, S.; Ivandic, M. Monitoring and volumetric estimation of injected CO2 using 4D seismic, petrophysical data, core measurements and well logging: A case study at Ketzin, Germany. Geophys. Prospect. 2012, 60, 957–973. [Google Scholar] [CrossRef] [Green Version]
- Obidegwu, D.; Chassagne, R.; MacBeth, C. Seismic assisted history matching using binary maps. J. Nat. Gas Sci. Eng. 2017, 42, 69–84. [Google Scholar] [CrossRef]
- Grude, S.; Landrø, M.; White, J.; Torsæter, O.; Torsaeter, O. CO2 saturation and thickness predictions in the Tubåen Fm., Snøhvit field, from analytical solution and time-lapse seismic data. Int. J. Greenh. Gas Control 2014, 29, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Souza1, R.; Lumley, D.; Shragge, J.; Davolio, A.; Schiozer, D.J. Analysis of time-lapse seismic and production data for reservoir model classification and assessment. J. Geophys. Eng. 2018, 15, 1561–1587. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.T. Integration of Rock Physics and Reservoir Simulation for the Interpretation of Time-Lapse Seismic Data at Weyburn Field, Saskatchewan. Master’s Thesis, Colorado School of Mines, Golden, CO, USA, 2002. [Google Scholar]
- Leeuwenburgh, O.; Meekes, S.; Vandeweijer, V.; Brouwer, J. Stochastic history matching to time-lapse seismic of a CO2 -EOR project sector model. Int. J. Greenh. Gas Control. 2016, 54, 441–453. [Google Scholar] [CrossRef]
- Ghosh, R. Monitoring field scale CO2 injection from time-lapse seismic and well log, integrating with advanced rock physics model at Cranfield EOR site. Acta Geophys. 2017, 65, 1207–1218. [Google Scholar] [CrossRef]
- Alfi, M.; Hosseini, S.A. Integration of reservoir simulation, history matching, and 4D seismic for CO2-EOR and storage at Cranfield, Mississippi, USA. Fuel 2016, 175, 116–128. [Google Scholar] [CrossRef] [Green Version]
- Mur, A.; Barajas-Olalde, C.; Adams, D.C.; Jin, L.; He, J.; Hamling, J.A.; Gorecki, C.D. Integrated simulation to seismic and seismic reservoir characterization in a CO2 EOR monitoring application. Lead. Edge 2020, 39, 668–678. [Google Scholar] [CrossRef]
- Raef, A.E.; Miller, R.D.; Byrnes, A.P.; Harrison, W.E. 4D seismic monitoring of the miscible CO2 flood of Hall-Gurney Field, Kansas, U.S. Geophysics 2004, 23, 1171–1176. [Google Scholar] [CrossRef]
- Ji, L.; MacBeth, C.; Mangriotis, M.-D. A Critical Comparison of Three Methods for Time-Lapse Time-Shift Calculation. Math. Geol. 2021, 53, 55–80. [Google Scholar] [CrossRef]
- MacBeth, C.; Mangriotis, M.; Amini, H. An interpretation and evaluation of post-stack 4D seismic time-shifts. In Proceedings of the 80th EAGE Conference and Exhibition, Copenhagen, Denmark, 11–14 June 2018. [Google Scholar]
- Aarre, V. Estimating 4D velocity changes and contact movement on the norne field, OTC 19049. In Proceedings of the 2007 Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 2007. [Google Scholar]
- Barajas-Olalde, C.; Haffinger, P.; Gisolf, D.; Zhang, M.; Droujinina, A.; Doulgeris, P.; Khatibi, S.; Jin, L.; Burnison, S.A.; Hamling, J.A.; et al. Simultaneous time-lapse WEB-AVO inversion for seismic reservoir monitoring: Application to CO2 enhanced oil recovery at the Bell Creek oil field. In 2019 SEG Technical Program Expanded Abstracts; 2019; pp. 564–568. Available online: https://library.seg.org/doi/abs/10.1190/segam2019-3216895.1 (accessed on 27 February 2021). [CrossRef]
- Cather, M.; Rose-Coss, D.; Galagher, S.; Trujillo, N.; Cather, S.; Hollingworth, R.S.; Leary, J. Deposition, diagenesis, and sequence stratigraphy of the pennsylvanian morrowan and atokan intervals at farnsworth unit. Energies 2021, 14, 1057. [Google Scholar] [CrossRef]
- Gallagher, S.R. Depositional and Diagenetic Controls on Reservoir Heterogeneity: Upper Morrow Sandstone, Farnsworth Unit, Ochiltree County, Texas. Master’s Thesis, New Mexico Tech, Socorro, NM, USA, 2014. [Google Scholar]
- Moodie, N.; Ampomah, W.; Jia, W.; Heath, J.; McPherson, B. Assignment and calibration of relative permeability by hydrostratigraphic units for multiphase flow analysis, case study: CO2-EOR operations at the Farnsworth Unit, Texas. Int. J. Greenh. Gas Control 2019, 81, 103–114. [Google Scholar] [CrossRef]
- Balch, R.S.; McPherson, B.; Will, R.A.; Ampomah, W. Recent Developments in Modeling: Farnsworth Texas, CO2 EOR Carbon Sequestration Project. In Proceedings of the15th International Conference on Greenhouse Gas Control Technologies, Abu Dhabi, United Arab Emirates, 5–8 October 2020. [Google Scholar]
- Ampomah, W.; Balch, R.; Grigg, R.B.; Cather, M.; Gragg, E.; Will, R.A.; White, M.; Moodie, N.; Dai, Z. Performance assessment of CO2-enhanced oil recovery and storage in the Morrow reservoir. Géoméch. Geophys. Geo-Energy Geo-Resour. 2017, 3, 245–263. [Google Scholar] [CrossRef]
- Gunda, D.; Ampomah, W.; Grigg, R.; Balch, R. Reservoir fluid characterization for miscible enhanced oil recovery. In Proceedings of the Carbon Management Technology Conference, Sugar Land, TX, USA, 17–18 November 2015. [Google Scholar]
- Grigg, R.B.; Ampomah, W.; Gundah, D. Integrating CO2 EOR and CO2 Storage in Farnsworth Field. In Proceedings of the 2015 DOE Carbon Storage Meeting, Pittsburgh, PA, USA, 18–20 August 2015. [Google Scholar]
- Pedersen, K.; Milter, J.; Sørensen, H. Cubic Equations of State Applied to HT/HP and Highly Aromatic Fluids. SPE J. 2004, 9, 186–192. [Google Scholar] [CrossRef]
- Peng, D.-Y.; Robinson, D.B. A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam. 1976, 15, 59–64. [Google Scholar] [CrossRef]
- Péneloux, A.; Rauzy, E.; Fréze, R. A consistent correction for Redlich-Kwong-Soave volumes. Fluid Phase Equilibria 1982, 8, 7–23. [Google Scholar] [CrossRef]
- Lohrenz, J.; Bray, B.G.; Clark, C.R. Calculating Viscosities of Reservoir Fluids From Their Compositions; Society of Petroleum Engineers, 1964; Available online: https://www.semanticscholar.org/paper/Calculating-Viscosities-of-Reservoir-Fluids-From-Lohrenz-Bray/ed2d581ab5899d5a7f16fae0d455c68c2f777798 (accessed on 27 February 2021). [CrossRef]
- Rasmussen, L.; Fan, T.; Rinehart, A.; Luhmann, A.; Ampomah, W.; Dewers, T.; Heath, J.; Cather, M.; Grigg, R. Carbon storage and enhanced oil recovery in pennsylvanian morrow formation clastic reservoirs: Controls on oil–brine and oil–CO2 relative permeability from diagenetic heterogeneity and evolving wettability. Energies 2019, 12, 3663. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Ampomah, W.; You, J.; Cather, M.; Balch, R. Practical CO2—WAG field operational designs using hybrid numerical-machine-learning approaches. Energies 2021, 14, 1055. [Google Scholar] [CrossRef]
- Lemmon, E.W.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties—REFPROP Version 8.0; National Institute of Standards and Technology, Standard Reference Data Program: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Huber, M.L. NIST Thermophysical Properties of Hydrocarbon Mixtures, NISTt4 (Supertrapp), v3.1; Standard Reference Data, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2003. [Google Scholar]
- Altundas, B.; Chugunov, N.; Ramakrishnan, T.S.; Will, R. Quantifying the effect of CO2 dissolution on seismic monitoring of CO2 in CO2-EOR. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists, 2017; pp. 3771–3775. Available online: https://library.seg.org/doi/abs/10.1190/segam2017-17792996.1 (accessed on 27 February 2021).
- Holme, L.; Josendal, V.A. Effect of oil displacement on miscible-type displacement by carbon dioxide. SPE J. 1982, 22, 87–98. [Google Scholar]
- Mavko, G.; Mukerji, T.; Dvorkin, J. The Rock Physics Handbook; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Biot, M.A. Theory of propagation of elastic waves in a fluid saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 1956, 28, 179–191. [Google Scholar] [CrossRef]
- El-Kaseeh, G.; Czoski, P.; Will, R.; Balch, R.; Ampomah, W.; Li, X. Time-lapse vertical seismic profile for CO2 monitoring in carbon capture, utilization, and sequestration/EOR, Farnsworth project. In SEG Technical Program Expanded Abstracts 2018; 2018; pp. 5377–5381. Available online: https://library.seg.org/doi/10.1190/segam2018-2995747.1 (accessed on 27 February 2021). [CrossRef]
- Nickel, M.; Sonneland, L. Non-rigid matching of migrated time-lapse seismic. In 69th Ann. Internat. Mtg., SEG, Expanded Abstracts; 1999; p. 872. Available online: https://library.seg.org/doi/abs/10.1190/1.1821191 (accessed on 27 February 2021).
- Worthington, M. Interpreting seismic anisotropy in fractured reservoirs. First Break. 2008, 26, 57–63. [Google Scholar] [CrossRef]
Components | Molecular | Molecular | Critical | Critical |
---|---|---|---|---|
fraction | weight | Temperature | Pressure | |
% | gm/mol | °F | Psi | |
CO2 | 0 | 44.01 | 87.89 | 1069.8 |
C1 | 38.49 | 16.04 | −116.59 | 667.17 |
C2 | 3.86 | 30.07 | 90.05 | 708.36 |
C3 | 2.46 | 44.1 | 205.97 | 615.83 |
C4′s | 1.95 | 58.12 | 453.65 | 430.62 |
C5′s | 1.79 | 72.15 | 301.12 | 547.81 |
C6′s | 2.83 | 86.18 | 380.71 | 489.79 |
HC1 (7–38) | 33.48 | 189.95 | 802.94 | 326.19 |
HC2 (38–70) | 15.13 | 545.65 | 1077.75 | 235.69 |
Standard Conditions | Reservoir Volume | |||||
---|---|---|---|---|---|---|
Monitor | Date | Water (stb) | CO2 (mscf) | Water (cf) | CO2 (cf) | W/G Ratio |
1 | 1/17/2015 | 16,550 | 553,100 | 885,100 | 7,665,000 | 0.12 |
2 | 12/3/2016 | 99,100 | 1,314,000 | 5,298,000 | 18,020,000 | 0.29 |
3 | 1/1/2018 | 141,000 | 1,623,000 | 789,100 | 22,490,000 | 0.33 |
Parameter | Min | Max |
---|---|---|
Porosity (fraction) | 0.075 | 0.175 |
Water Saturation (fraction) | 0.3 | 0.75 |
Oil Saturation (fraction) | 0.27 | 0.7 |
CO2 Feed Fraction | 0 | 1 |
Hydrocarbon Fractions | Proportional | |
Temperature (°F) | 163 | 173 |
Pressure (psi) | 4000 | 6000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Will, R.; Bratton, T.; Ampomah, W.; Acheampong, S.; Cather, M.; Balch, R. Time-Lapse Integration at FWU: Fluids, Rock Physics, Numerical Model Integration, and Field Data Comparison. Energies 2021, 14, 5476. https://doi.org/10.3390/en14175476
Will R, Bratton T, Ampomah W, Acheampong S, Cather M, Balch R. Time-Lapse Integration at FWU: Fluids, Rock Physics, Numerical Model Integration, and Field Data Comparison. Energies. 2021; 14(17):5476. https://doi.org/10.3390/en14175476
Chicago/Turabian StyleWill, Robert, Tom Bratton, William Ampomah, Samuel Acheampong, Martha Cather, and Robert Balch. 2021. "Time-Lapse Integration at FWU: Fluids, Rock Physics, Numerical Model Integration, and Field Data Comparison" Energies 14, no. 17: 5476. https://doi.org/10.3390/en14175476
APA StyleWill, R., Bratton, T., Ampomah, W., Acheampong, S., Cather, M., & Balch, R. (2021). Time-Lapse Integration at FWU: Fluids, Rock Physics, Numerical Model Integration, and Field Data Comparison. Energies, 14(17), 5476. https://doi.org/10.3390/en14175476