A New Mechanical-Hydrodynamic Safety Factor Index for Sand Production Prediction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sanding Process
2.1.1. Mechanical Failure
2.1.2. Hydrodynamic Erosion
2.2. Definition of the Mechanical-Hydrodynamic SFI
2.3. Case Study and Numerical Modelling
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Willson, S.M.; Moschovidis, Z.A.; Cameron, J.R.; Palmer, I.D. New Model for Predicting the Rate of Sand Production. In Proceedings of the SPE/ISRM Rock Mechanics Conference, Irving, TX, USA, 20 October 2002. [Google Scholar] [CrossRef]
- Selvadurai, A.P.S.; Suvorov, A.P. Constitutive Relationships Governing Thermo-Poroelastic Processes. In Thermo-Poroelasticity and Geomechanics; Cambridge University Press: Cambridge, UK, 2016; ISBN 9781316543832. [Google Scholar] [CrossRef]
- Todorov, M. Cyclic Soils Properties. In Proceedings of the 7th International Structural Engineering and Construction, Honolulu, HI, USA, 18–23 June 2013. [Google Scholar] [CrossRef]
- Hall, C.D.; Harrisberger, W.H. Stability of Sand Arches: A Key to Sand Control. J. Pet. Technol. 1970, 22, 821–829. [Google Scholar] [CrossRef]
- Bratli, R.K.; Risnes, R. Stability and Failure of Sand Arches. Soc. Pet. Eng. J. 1981, 21, 236–248. [Google Scholar] [CrossRef]
- Morita, N.; Whitfill, D.L.; Fedde, O.P.; Levik, T.H. Parametric Study of Sand Production Prediction: Analytical Approach. SPE Prod. Eng. 1989, 4, 25–33. [Google Scholar] [CrossRef]
- Veeken, C.A.M.; Walters, J.V.; Kenter, C.J.; Davies, D.R. Use of Plasticity Models for Predicting Borehole Stability. In Proceedings of the ISRM International Symposium, Pau, France, 30 August 1989. [Google Scholar]
- Vardoulakis, I.; Stavropoulou, M.; Papanastasiou, P. Hydromechanical Aspects of the Sand Production Problem. Transp. Porous Media 1996, 22, 225–244. [Google Scholar] [CrossRef]
- Tronvoll, J.; Skjaerstein, A.; Papamichos, E. Sand Production: Mechanical Failure or Hydrodynamic Erosion. Int. J. Rock Mech. Min. Sci. 1997, 34, 1–17. [Google Scholar] [CrossRef]
- Stavropoulou, M.; Papanastasiou, P.; Vardoulakiz, I. Coupled Wellbore Erosion and Stability Analysis. Int. J. Numer. Anal. Methods Geomech. 1998, 22, 749–769. [Google Scholar] [CrossRef]
- Papamichos, E.; Vardoulakis, I.; Tronvoll, J.; Skjaerstein, A. Volumetric Sand Production Model and Experiment. Int. J. Numer. Anal. Methods Geomech. 2001, 25, 789–808. [Google Scholar] [CrossRef]
- Chin, L.Y.; Ramos, G.G. Predicting Volumetric Sand Production in Weak Reservoirs. In Proceedings of the SPE/ISRM Rock Mechanics Conference, Irving, TX, USA, 20 October 2002. [Google Scholar] [CrossRef]
- Vaziri, H.; Barree, B.; Xiao, Y.; Palmer, I.; Kutas, M. What Is the Magic of Water in Producing Sand? In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 29 September–2 October 2002. [Google Scholar] [CrossRef]
- Wang, J.; Wan, R.G.; Settari, A.; Walters, D. Prediction of Volumetric Sand Production and Wellbore Stability Analysis of a Well at Different Completion Schemes. In Proceedings of the 40th U.S. Symposium on Rock Mechanics, Anchorage, AK, USA, 25–29 June 2005. [Google Scholar]
- Nouri, A.; Vaziri, H.; Belhaj, H. Sand-production Prediction: A New Set of Criteria for Modeling Based on Large Scale Transient Experiments and Numerical Investigation. Soc. Pet. Eng. J. 2006, 11, 227–237. [Google Scholar] [CrossRef]
- Detournay, C.P. Numerical Modeling of the Slit Mode of Cavity Evolution Associated with Sand Production. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 21 September 2008. [Google Scholar] [CrossRef]
- Pacheco, E.J.; Soliman, M.Y.; Zepeda, R.; Wang, J.; Settari, A. Sanding Prediction in a Gas Well Offshore Mexico Using a Numerical Simulator. In Proceedings of the Latin American and Caribbean Petroleum Engineering Conference, Cartagena de Indias, Bolívar, Colombia, 31 May 2009. [Google Scholar] [CrossRef]
- Pham, T.; Weijermars, R. Hydraulic Fracture Propagation in a Poro-Elastic Medium with Time-Dependent Injection Schedule Using the Time-Stepped Linear Superposition Method (TLSM). Energies 2020, 13, 6474. [Google Scholar] [CrossRef]
- Singh, A.; Das, S.; Craciun, E.M. Effect of Thermo-Mechanical Loading on an Edge Crack of Finite Length in an Infinite Orthotropic Strip. Mech. Compos. Mater. J. 2019, 55, 285–296. [Google Scholar] [CrossRef]
- Kim, H.S.; Sharma, M.M.; Fitzpatrick, H.J. A Predictive Model for Sand Production in Poorly Consolidated Sands. In Proceedings of the International Petroleum Technology Conference, Bangkok, Thailand, 15 November 2011. [Google Scholar] [CrossRef] [Green Version]
- Ewy, R.T.; Ray, P.; Bovberg, C.A.; Norman, P.D.; Goodman, H.E. Openhole Stability and Sanding Predictions by 3D Extrapolation from Hole-Collapse Tests. J. SPE Drill. Completion 2001, 16, 243–251. [Google Scholar] [CrossRef]
- Papanastasiou, P.C.; Vardoulakis, I.G. Numerical Treatment of Progressive Localization in Relation to Borehole Stability. Int. J. Numer. Anal. Methods Geomech. 1992, 16, 389–424. [Google Scholar] [CrossRef]
- Fattahpour, V.; Moosavi, M.; Mehranpour, M. An Experimental Investigation on the Effect of Grain Size on Oil-Well Sand Production. Pet. Sci. 2012, 9, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Fjaer, E.; Holt, R.M.; Horsrud, P.; Raaen, A.M.; Risnes, R. Petroleum Related Rock Mechanics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2008; ISBN 978-0-444-50260-5. [Google Scholar]
- Knez, D.; Calicki, A. Looking for a New Source of Natural Proppants in Poland. J. Bull. Pol. Acad. Sci. Tech. Sci. 2018, 66, 3–8. [Google Scholar] [CrossRef]
- Knez, D.; Mazur, S. Simulation of Fracture Conductivity Changes due to Proppant Composition and Stress Cycles. J. Pol. Miner. Eng. Soc. 2019, 2, 231–234. [Google Scholar]
- Rajaoalison, H.; Knez, D.; Zlotkowski, A. Changes of Dynamic Mechanical Properties of Brine-Saturated Istebna Sandstone under Action of Temperature and Stress. Przemysł Chem. 2019, 98, 801–804. [Google Scholar] [CrossRef]
- Fluid-Mechanical Interaction. In FLAC3D Manual; Itasca Group: Minneapolis, MN, USA, 2020.
- Knez, D. Stress State Analysis in Aspect of Wellbore Drilling Direction. J. Arch. Min. Sci. 2014, 59, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Tronvoll, J.; Fjær, E. Experimental Study of Sand Production from Perforation Cavities. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1994, 31, 393–410. [Google Scholar] [CrossRef]
- Knez, D.; Wiśniowski, R.; Owusu, W.A. Turning Filling Material into Proppant for Coalbed Methane in Poland-Crush test results. Energies 2019, 12, 1820. [Google Scholar] [CrossRef] [Green Version]
- Papanastasiou, P.; Zervos, A. Three-dimensional Stress Analysis of a Wellbore with Perforations and a Fracture. In Proceedings of the SPE/ISRM Rock Mechanics in Petroleum Engineering, Trondheim, Norway, 8 July 1998. [Google Scholar] [CrossRef]
- Knez, D.; Rajaoalison, H. Discrepancy Between Measured Dynamic Poroelastic Parameters and Predicted Values from Wyllie’s Equation for Water-Saturated Istebna Sandstone. Acta Geophys. 2021, 69, 673–680. [Google Scholar] [CrossRef]
- Quosay, A.A.; Knez, D. Sensitivity Analysis on Fracturing Pressure using Monte Carlo Simulation Technique. Oil Gas Eur. Mag. 2016, 42, 140–144. [Google Scholar]
- Quosay, A.A.; Knez, D.; Ziaja, J. Hydraulic Fracturing: New Uncertainty Based modelling Approach for Process Design Using Monte Carlo Simulation Technique. PLoS ONE 2020, 15, e0236726. [Google Scholar] [CrossRef]
- Amini, S.; Mohaghegh, S. Application of Machine Learning and Artificial Intelligence in Proxy Modelling for Fluid Flow in Porous Media. Fluids 2019, 4, 126. [Google Scholar] [CrossRef] [Green Version]
Object | Property | Unit | Value |
---|---|---|---|
In situ stresses | σv | MPa | 49 |
σH | MPa | 42 | |
σh | MPa | 40.6 | |
Reservoir | Dry density | kg/m3 | 2300 |
Cohesion | MPa | 6.38 | |
Friction angle | degree | 30 | |
Young modulus | GPa | 14 | |
Bulk modulus | GPa | 14.58 | |
Shear modulus | GPa | 8.333 | |
Poisson ratio | - | 0.34 | |
Tensile strength | MPa | 14 | |
Porosity | % | 8.08 | |
Oil density | kg/m3 | 700 | |
Mobility coefficient | m2/(Pa.s) | 10−15 | |
Biot coefficient | - | 0.5 | |
Pore pressure | MPa | 20.6 | |
Biot bulk modulus | GPa | 160 | |
Saturation degree | - | 1 | |
Wellbore | Diameter | cm | 21.6 |
Perforations | Perforation spacing | cm | 6 |
Perforation diameter | cm | 1.7 | |
Casing | Young modulus | GPa | 200 |
Poisson ratio | - | 0.3 | |
Thickness | cm | 1 | |
Density | kg/m3 | 5000 |
Perforations Spacing (cm) | Perforations Length (cm) | Perforations Parallel to σH | Perforations Parallel to σh | ||||
---|---|---|---|---|---|---|---|
SFHyd | SFMech | SFI | SFHyd | SFMech | SFI | ||
4 | 10 | 1.14 | 0.80 | 0.80 | 1.20 | 1.10 | 1.10 |
20 | 1.00 | 1.18 | 1.00 | 1.01 | 1.07 | 1.01 | |
40 | 1.00 | 1.04 | 1.00 | 1.00 | 1.02 | 1.00 | |
6 | 10 | 1.15 | 1.68 | 1.15 | 1.21 | 1.51 | 1.21 |
20 * | 1.00 * | 0.98 * | 0.98 * | 1.00 * | 1.35 * | 1.00 * | |
40 | 1.01 | 1.08 | 1.01 | 1.05 | 1.29 | 1.05 | |
8 | 10 | 1.30 | 1.20 | 1.20 | 1.48 | 1.61 | 1.48 |
20 | 1.02 | 1.52 | 1.02 | 1.00 | 1.53 | 1.00 | |
40 | 1.00 | 1.42 | 1.00 | 1.03 | 1.29 | 1.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamani, M.A.M.; Knez, D. A New Mechanical-Hydrodynamic Safety Factor Index for Sand Production Prediction. Energies 2021, 14, 3130. https://doi.org/10.3390/en14113130
Zamani MAM, Knez D. A New Mechanical-Hydrodynamic Safety Factor Index for Sand Production Prediction. Energies. 2021; 14(11):3130. https://doi.org/10.3390/en14113130
Chicago/Turabian StyleZamani, Mohammad Ahmad Mahmoudi, and Dariusz Knez. 2021. "A New Mechanical-Hydrodynamic Safety Factor Index for Sand Production Prediction" Energies 14, no. 11: 3130. https://doi.org/10.3390/en14113130
APA StyleZamani, M. A. M., & Knez, D. (2021). A New Mechanical-Hydrodynamic Safety Factor Index for Sand Production Prediction. Energies, 14(11), 3130. https://doi.org/10.3390/en14113130