Energy Efficiency Improvement Solutions for Supermarkets by Low-E Glass Door and Digital Semi-Hermetic Compressor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Low-E Glass Door
2.2. Digital Semi-Hermetic Compressor
3. Results
3.1. Energy Efficiency Improvement by Low-E Glass Door
3.2. Energy Efficiency Improvement by Digital Steam Compressor
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Saengsikhiao, P.; Taweekun, J.; Maliwan, K.; Sae-ung, S.; Theppaya, T. Investigation and analysis of R463A as an alternative refrigerant to R404A with lower global warming potential. Energies 2020, 13, 1514. [Google Scholar] [CrossRef] [Green Version]
- Saengsikhiao, P.; Taweekun, J.; Maliwan, K.; Sae-ung, S.; Theppaya, T. The Performance Simulation of the New R463A HFC/HFO/Carbon Dioxide Refrigerant with Lower GWP, As an Alternate Option for the R404A Refrigeration System. J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 76, 113–123. [Google Scholar] [CrossRef]
- Redo, M.A.; Ohno, K.; Giannetti, N.; Yamaguchi, S.; Saito, K. Seasonal performance evaluation of CO2 open refrigerated display cabinets. Appl. Therm. Eng. 2019, 163, 114354. [Google Scholar] [CrossRef]
- Gray, I.; Luscombe, P.; McLean, L.; Sarathy, C.S.P.; Sheahen, P.; Srinivasan, K. Improvement of air distribution in refrigerated vertical open front remote supermarket display cases. Int. J. Refrig. Rev. Int. Froid 2008, 31, 902–910. [Google Scholar] [CrossRef]
- Rossetti, A.; Minetto, S.; Marinetti, S. A simplified thermal CFD approach to fins and tube heat exchanger: Application to maldistributed airflow on an open display cabinet. Int. J. Refrig. 2015, 57, 208–215. [Google Scholar] [CrossRef]
- Wu, X.; Chang, Z.; Zhao, X.; Li, W.; Lu, Y.; Yuan, P. A multiscale approach for refrigerated display cabinet coupled with supermarket HVAC system-Part II: The performance of VORDC and energy consumption analysis. Int. J. Heat Mass Transf. 2015, 87, 685–692. [Google Scholar] [CrossRef]
- Rossetti, A.; Minetto, S.; Marinetti, S. Numerical modelling and validation of the air flow maldistribution in the cooling duct of a horizontal display cabinet. Appl. Therm. Eng. 2015, 87, 24–33. [Google Scholar] [CrossRef]
- Wu, X.; Chang, Z.; Zhao, X.; Li, W.; Lu, Y.; Yuan, P. A multiscale approach for refrigerated display cabinet coupled with supermarket HVAC system—Part I: Methodology and verification. Int. J. Heat Mass Transf. 2015, 87, 673–684. [Google Scholar] [CrossRef]
- Cao, Z.K.; Han, H.; Gu, B. A novel optimization strategy for the design of air curtains for open vertical refrigerated display cases. Appl. Therm. Eng. 2011, 31, 3098–3105. [Google Scholar] [CrossRef]
- Cao, Z.; Gu, B.; Han, H.; Mills, G. Application of an effective strategy for optimizing the design of air curtains for open vertical refrigerated display cases. Int. J. Therm. Sci. 2010, 49, 976–983. [Google Scholar] [CrossRef]
- Yu, K.Z.; Ding, G.L.; Chen, T.J. A correlation model of thermal entrainment factor for air curtain in a vertical open display cabinet. Appl. Therm. Eng. 2009, 29, 2904–2913. [Google Scholar] [CrossRef]
- Marinetti, S.; Rossetti, A.; Ferrari, F.; Minetto, S. Air curtain temperature measurement in an open refrigerated display cabinet by IR thermography. Quant. Infrared Thermogr. J. 2015, 12, 1–11. [Google Scholar] [CrossRef]
- Laguerre, O.; Hoang, M.H.; Osswald, V.; Flick, D. Experimental study of heat transfer and air flow in a refrigerated display cabinet. J. Food Eng. 2012, 113, 310–321. [Google Scholar] [CrossRef]
- Laguerre, O.; Hoang, M.H.; Flick, D. Heat transfer modelling in a refrigerated display cabinet: The influence of operating conditions. J. Food Eng. 2012, 108, 353–364. [Google Scholar] [CrossRef]
- Wu, X.; Li, W.; Wang, Y.; Chang, Z.; Wang, C.; Ding, C. Experimental investigation of the performance of cool storage shelf for vertical open refrigerated display cabinet. Int. J. Heat Mass Transf. 2017, 110, 789–795. [Google Scholar] [CrossRef]
- Harrington, L.; Aye, L.; Fuller, B.; Hepworth, G. Peering into the cabinet: Quantifying the energy impact of door openings and food loads in household refrigerators during normal use. Int. J. Refrig. Rev. Int. Froid 2019, 104, 437–454. [Google Scholar] [CrossRef]
- Alzuwaid, F.; Ge, Y.; Tassou, S.; Sun, J. The novel use of phase change materials in an open type refrigerated display cabinet: A theoretical investigation. Appl. Energy 2016, 180, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Heidinger, G.G.; Nascimento, S.M.; Gaspar, P.D.; Silva, P.D. Experimental study of the fins arrangement pattern of refrigerated display cabinet evaporator towards thermal performance improvement. Appl. Therm. Eng. 2018, 138, 246–253. [Google Scholar] [CrossRef]
- Borges, B.N.; Melo, C.; Hermes, C.J. Transient simulation of a two-door frost-free refrigerator subjected to periodic door opening and evaporator frosting. Appl. Energy 2015, 147, 386–395. [Google Scholar] [CrossRef]
- Alzuwaid, F.; Ge, Y.T.; Tassou, S.A.; Raeisi, A.; Gowreesunker, L. The novel use of phase change materials in a refrigerated display cabinet: An experimental investigation. Appl. Therm. Eng. 2015, 75, 770–778. [Google Scholar] [CrossRef]
- Titariya, V.K.; Agarwal, A.B. Performance Analysis of the Single Jet Air Curtain for Open Refrigerated Display Cabinet by Using Artificial Neural Network. J. Therm. Eng. 2020, 6, 359–368. [Google Scholar] [CrossRef]
- Saidur, R.; Masjuki, H.; Choudhury, I. Role of ambient temperature, door opening, thermostat setting position and their combined effect on refrigerator-freezer energy consumption. Energy Convers. Manag. 2002, 43, 845–854. [Google Scholar] [CrossRef]
- Chaomuang, N.; Laguerre, O.; Flick, D. A simplified heat transfer model of a closed refrigerated display cabinet. Therm. Sci. Eng. Prog. 2020, 17, 100494. [Google Scholar] [CrossRef]
- Xie, Y.R.; Brecht, J.K.; Abrahan, C.E.; Bornhorst, E.R.; Luo, Y.G.; Monge, A.L.; Vorst, K.; Brown, W. Improving temperature management and retaining quality of freshcut leafy greens by retrofitting open refrigerated retail display cases with doors. J. Food Eng. 2021, 292, 110271. [Google Scholar] [CrossRef]
- Chaomuang, N.; Flick, D.; Denis, A.; Laguerre, O. Influence of operating conditions on the temperature performance of a closed refrigerated display cabinet. Int. J. Refrig. 2019, 103, 32–41. [Google Scholar] [CrossRef]
- Chaomuang, N.; Flick, D.; Laguerre, O. Experimental and numerical investigation of the performance of retail refrigerated display cabinets. Trends Food Sci. Technol. 2017, 70, 95–104. [Google Scholar] [CrossRef]
- Belman-Flores, J.M.; Ledesma, S.; Rodriguez-Valderrama, D.A.; Hernandez-Fusilier, D. Energy optimization of a domestic refrigerator controlled by a fuzzy logic system using the status of the door. Int. J. Refrig. Rev. Int. Froid 2019, 104, 1–8. [Google Scholar] [CrossRef]
- Ben-Abdallah, R.; Leducq, D.; Hoang, H.; Fournaison, L.; Pateau, O.; Ballot-Miguet, B.; Delahaye, A. Experimental investigation of the use of PCM in an open display cabinet for energy management purposes. Energy Convers. Manag. 2019, 198, 111909. [Google Scholar] [CrossRef]
- Chaomuang, N.; Laguerre, O.; Flick, D. Dynamic heat transfer modeling of a closed refrigerated display cabinet. Appl. Therm. Eng. 2019, 161, 114138. [Google Scholar] [CrossRef]
- De Frias, J.A.; Luo, Y.; Kou, L.; Zhou, B.; Wang, Q. Improving spinach quality and reducing energy costs by retrofitting retail open refrigerated cases with doors. Postharvest Biol. Technol. 2015, 110, 114–120. [Google Scholar] [CrossRef]
- Somasundaram, S.; Chong, A.; Wei, Z.; Thangavelu, S.R. Energy saving potential of low-e coating based retrofit double glazing for tropical climate. Energy Build. 2020, 206, 109570. [Google Scholar] [CrossRef]
- Abundiz-Cisneros, N.; Sanginés, R.; Rodríguez-López, R.; Peralta-Arriola, M.; Cruz, J.; Machorro, R. Novel Low-E filter for architectural glass pane. Energy Build. 2020, 206, 109558. [Google Scholar] [CrossRef]
- Chan, H.-T.; Lin, C.-Y.; Chang, S.-C. Influence of N2 ratio in Hydrogen/Nitrogen Plasma on Titanium dioxide/Aluminum doped Zinc Oxide Bilayer Films Applied for Multifunctional Energy-saving Glass. In Proceedings of the 2020 15th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, Taiwan, 21–23 October 2020; pp. 1–4. [Google Scholar]
- Chen, Y.-H.; Shih, F.-Y.; Lee, M.-T.; Lee, Y.-C.; Chen, Y.-B. Development of lightweight energy-saving glass and its near-field electromagnetic analysis. Energy 2020, 193, 193. [Google Scholar] [CrossRef]
- Kim, H.; Nam, S. Transmission Enhancement Methods for Low-Emissivity Glass at 5G mmWave Band. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 108–112. [Google Scholar] [CrossRef]
- Somasundaram, S.; Thangavelu, S.R.; Chong, A. Effect of Existing Facade’s Construction and Orientation on the Performance of Low-E-Based Retrofit Double Glazing in Tropical Climate. Energies 2020, 13, 2016. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ma, Z.; Gao, C.; Li, Z. Analysis on energy consumption of rural residential buildings in Shanxi. Xi’an Jianzhu Keji Daxue Xuebao/J. Xi’an Univ. Archit. Technol. 2020, 52, 667–673. [Google Scholar]
- Yu, F.; Leng, J. Multivariable interactions in simulation-based energy-saving glass roof designs. Sol. Energy 2020, 201, 760–772. [Google Scholar] [CrossRef]
- De Frias, J.A.; Luo, Y.G.; Zhou, B.; Turner, E.R.; Millner, P.D.; Nou, X.W. Minimizing pathogen growth and quality de-terioration of packaged leafy greens by maintaining optimum temperature in refrigerated display cases with doors. Food Control 2018, 92, 488–495. [Google Scholar] [CrossRef]
- Brenes, A.L.M.; Brown, W.; Steinmaus, S.; Brecht, J.K.; Xie, Y.; Bornhorst, E.R.; Luo, Y.; Zhou, B.; Shaw, A.; Vorst, K. Temperature profiling of open- and closed-doored produce cases in retail grocery stores. Food Control. 2020, 113, 107158. [Google Scholar] [CrossRef]
- Yu, F. Research of environment-friendly low emissivity glass. J. Wuhan Univ. Technol. Sci. Ed. 2007, 22, 385–387. [Google Scholar] [CrossRef]
- Guo, X.; Yang, C.; Zhang, C.; Yang, H.; Yang, T. Simulation on thermal performance of energy-saving windows and doors and its influence on building energy consumption. Jianzhu Cailiao Xuebao/J. Build. Mater. 2014, 17, 261–297. [Google Scholar]
- Liu, L.; Chang, H.; Xu, T.; Song, Y.; Zhang, C.; Hang, Z.H.; Hu, X. Achieving low-emissivity materials with high transmission for broadband radio-frequency signals. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Ren, J. Research on technology clusters and the energy efficiency of energy-saving retrofits of existing office buildings in different climatic regions. Energy Sustain. Soc. 2018, 8, 11. [Google Scholar] [CrossRef]
- Amin, M.; Dabiri, D.; Navaz, H.K. Tracer gas technique: A new approach for steady state infiltration rate measurement of open refrigerated display cases. J. Food Eng. 2009, 92, 172–181. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, N.; Shi, L.; Chi, L. Comparison of independent and synchronous opening control strategies of two air-dampers in three-temperature frost-free refrigerator. Appl. Therm. Eng. 2018, 128, 127–133. [Google Scholar] [CrossRef]
- Youn, S.-J.; Noh, Y. Reliability-based design optimization of refrigerator door hinges using PIDO technology. Int. J. Precis. Eng. Manuf. 2015, 16, 715–722. [Google Scholar] [CrossRef]
- Chaomuang, N.; Flick, D.; Denis, A.; Laguerre, O. Experimental and numerical characterization of airflow in a closed re-frigerated display cabinet using PIV and CFD techniques. Int. J. Refrig. 2020, 111, 168–177. [Google Scholar] [CrossRef]
- Watcharapongvinij, A.; Therdyothin, A. In Energy cost saving evaluation of VSD installation in compressor rack of refrigeration system for the retail and wholesale building. Energy Procedia 2017, 138, 8–13. [Google Scholar] [CrossRef]
- Tu, Q.; Dong, K.; Zou, D.; Lin, Y. Experimental study on multi-split air conditioner with digital scroll compressor. Appl. Therm. Eng. 2011, 31, 2449–2457. [Google Scholar] [CrossRef]
- Pattana, S.; Tantakitti, C.; Wiratkasem, K. Energy saving in six doors walk-in cooler. Energy Rep. 2020, 6, 510–515. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, X.; Cai, N.; Wang, L.; Zhang, Z. Study on energy consumption model of multi-unit air conditioning system with digital scroll compressor. J. Therm. Sci. Technol. 2020, 15, 1–18. [Google Scholar] [CrossRef]
- Saengsikhiao, P.; Taweekun, J.; Maliwan, K.; Sae-ung, S.; Theppaya, T. The improvement of energy efficiency for refrigeration system in Thailand convenience store by digital scroll compressor. J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 74, 144–150. [Google Scholar] [CrossRef]
- Saengsikhiao, P.; Taweekun, J. Improving Energy Efficiency in Supermarkets by Retrofitting Low-E Glass Doors for Open Refrigeration Systems with Digital Semi Hermetic Compressor. J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 82, 145–157. [Google Scholar] [CrossRef]
- Ye, K.; Ji, J.; Han, S. Semi-active noise control for a hermetic digital scroll compressor. J. Low Freq. Noise Vib. Act. Control. 2020, 39, 1204–1215. [Google Scholar] [CrossRef] [Green Version]
- Cha, D.A.; Kwon, O.K.; Oh, M.D. An experimental study on semiconductor process chiller using the digital scroll compressor. J. Mech. Sci. Technol. 2014, 28, 3345–3352. [Google Scholar] [CrossRef]
- Zhu, X.; Nie, X.; Lv, Y.; Wang, C.; Su, Y. Experimental research of operating performance on water source multiconnected air-conditioning system with digital scroll compressor in variable load. Energy Educ. Sci. Technol. Part A Energy Sci. Res. 2012, 30, 915–920. [Google Scholar]
- Vetal, D. Integrated VSD compressors: 8 key advantages. Plant Eng. 2016, 70, 39–42. [Google Scholar]
- Zhu, X.; Nie, X.; Lv, Y.; Wang, C.; Su, Y. Experimental research of variable operating performance on water source multi-connected air-conditioning system with digital scroll compressor. Res. J. Appl. Sci. Eng. Technol. 2013, 5, 5370–5376. [Google Scholar] [CrossRef]
- Huang, H.; Li, Q.; Yuan, D.; Qin, Z.; Zhang, Z. An experimental study on variable air volume operation of ducted air-conditioning with digital scroll compressor and conventional scroll compressor. Appl. Therm. Eng. 2008, 28, 761–766. [Google Scholar] [CrossRef]
- Saengsikhiao, P.; Taweekun, J.; Maliwan, K.; Sae-ung, S.; Theppaya, T. The replacement of the R404A refrigeration sys-tem with the environmentally friendly R448A, to improve convenience store energy efficiency in Thailand. J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 75, 137–146. [Google Scholar] [CrossRef]
- Saengsikhiao, P.; Taweekun, J.; Maliwan, K.; Sae-ung, S.; Theppaya, T. Development of Environmentally Friendly and Energy Efficient Refrigerants for Refrigeration Systems. Energy Eng. 2021, 118, 411–413. [Google Scholar] [CrossRef]
- Issaro, A.; Saengsikhiao, P.; Taweekun, J.; Thongruang, W. The Green Logistics Idea using Vacuum Insulation Panels (VIPs). J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 82, 72–86. [Google Scholar] [CrossRef]
Open Refrigerated with Doors | Digital Scroll Compressor | ||
---|---|---|---|
Previous Research | Energy Saving (%) | Previous Research | Energy Saving (%) |
Wu et al. (2015) | 20–30% | Cha, Kwon, and Oh (2014) | 26.70% |
Chaomuang et al. (2019) | 20–70% | Pattana, Tantakitti, and Wiratkasem (2020) | 20% |
Chaomuang et al. (2020) | 23–73% | Saengsikhiao et al. (2020) | 34% |
Xie et al. (2021) | 69% | Present Study No.1 (R22) | 19% |
Present Study Store No.1 R22 | 39.67% | Present Study No.2 (R404A) | 24% |
Present Study Store No.2 R404A | 37.37% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saengsikhiao, P.; Taweekun, J. Energy Efficiency Improvement Solutions for Supermarkets by Low-E Glass Door and Digital Semi-Hermetic Compressor. Energies 2021, 14, 3134. https://doi.org/10.3390/en14113134
Saengsikhiao P, Taweekun J. Energy Efficiency Improvement Solutions for Supermarkets by Low-E Glass Door and Digital Semi-Hermetic Compressor. Energies. 2021; 14(11):3134. https://doi.org/10.3390/en14113134
Chicago/Turabian StyleSaengsikhiao, Piyanut, and Juntakan Taweekun. 2021. "Energy Efficiency Improvement Solutions for Supermarkets by Low-E Glass Door and Digital Semi-Hermetic Compressor" Energies 14, no. 11: 3134. https://doi.org/10.3390/en14113134
APA StyleSaengsikhiao, P., & Taweekun, J. (2021). Energy Efficiency Improvement Solutions for Supermarkets by Low-E Glass Door and Digital Semi-Hermetic Compressor. Energies, 14(11), 3134. https://doi.org/10.3390/en14113134