How Will the Improvements of Electricity Supply Quality in Poor Regions Reduce the Regional Economic Gaps? A Case Study of China
Abstract
:1. Introduction
- (1)
- What is the current situation of ESQ inequality among different regions in China?
- (2)
- How and to what degree does ESQ impact on China’s economic development?
- (3)
- If we improve the ESQ in appointed regions, how much will it narrow the regional economic development gap?
2. Literature Review
3. Methodology and Data
3.1. Gini Index of ESQ Inequality
3.2. Estimation Model for the Impacts from ESQ to Economic Output
3.3. Data
4. Results and Discussion
4.1. Measurement of ESQ Inequality among Different Regions
4.2. The Impacts of ESQ on Regional Economic Output
4.2.1. Regression Results
4.2.2. Regional Heterogeneity
4.2.3. Trimmed Data for Robustness Test
4.3. The Impacts of ESQ Improvement on Regional Inequality Gaps
5. Conclusions and Policy Implications
5.1. Conclusions
5.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Appendix A
Province | Number of Poverty Counties | Names of Poverty Counties |
---|---|---|
Anhui | 20 | Yuexi, Shou, Qianshan, Susong, Yingshang, Dangshan, Lingbi, Si, Yu’an, Shucheng, Lixin, Taihu, Shitai, Funan, Xiao, Huoqiu, Wangjiang, Linquan, Jinzhai, Yingdong |
Chongqing | 14 | Wanzhou, Qianjiang, Wulong, Fengdu, Xiushan, Kaizhou, Yunyang, Wushan, Fengjie, Shizhu, Chengkou, Pengshui, Youyang, Wuxi |
Gansu | 58 | Gaolan, Kongtong, Zhengning, Liangdang, Linxia, Hezuo, Yongdeng, Yuzhong, Jingtai, Gangu, Wushan, Jingchuan, Lingtai, Cheng, Hui, Zhuoni, Diebu, Maqu, Luqu, Xiahe, Wen, Wudu, Kang, Lintan, Zhouqu, Jishishan, Yongjing, Guanghe, Hezheng, Kangle, Maiji, Zhangjiachuan, Qin’an, Qingshui, Zhuanglang, Jingning, Heshui, Huachi, Ning, Qingcheng, Lintao, Anding, Longxi, Zhang, Weiyuan, Huining, Jingyuan, Gulang, Tianzhu, Huan, Dangchang, Xihe, Li, Dongxiang, Linxia, Zhengyuan, Tongwei, Min |
Guangxi | 33 | Longzhou, Longsheng, Ziyuan, Tianyang, Tiandong, Xilin, Fuchuan, Jinxiu, Ningming, Daxin, Huanjiang, Rongan, Longan, Shanglin, Lingyun, Tianlin, Xincheng, Mashan, Debao, Donglan, Fengshan, Bama, Jingxi, Zhaoping, Tiandeng, Longlin, Rongshui, Luocheng, Leye, Napo, Dahua, Sanjiang, Duan |
Guizhou | 66 | Chishui, Tongxin, Fenggang, Meitan, Xishui, Xixiu, Pingba, Qianxi, Bijiang, Wanshan, Jiangkou, Yuping, Xingren, Wengan, Longli, Liuzhi, Panzhou, Daozhen, Wuchuan, Puding, Zhenning, Dafang, Shiqian, Yinjiang, Anlong, Shibing, Sansui, Zhenyuan, Leishan, Majiang, Danzhai, Guiding, Huishui, Puan, Zhenfeng, Guanling, Songtao, Sinan, Dejiang, Changshun, Dushan, Pingtang, Libo, Cengong, Tianzhu, Taijiang, Huangping, Liping, Qixingguan, Zhijin, Jinping, Luodian, Zhengan, Ceheng, Jianhe, Shuicheng, Sandu, Ziyun, Wangmo, Congjiang, Qinglong, Yanhe, Rongjiang, Hezhang, Nayong, Weining |
Hainan | 5 | Baoting, Qiongzhong, Wuzhishan, Lingao, Baisha |
Hebei | 45 | Haixing, Nanpi, Wangdu, Pingshan, Qinglong, Weixian, Pingxiang, Wei, Yi, Pingquan, Yanshan, Wuyi, Raoyang, Fucheng, Xingtang, Lingshou, Zanhuang, Daming, Lincheng, Julu, Xinhe, Guangzong, Laishui, Tang, Quyang, Shunping, Xuanhua, Wanquan, Chongli, Chengde, Luanping, Wuqiang, Weichang, Longhua, Fengning, Fuping, Laiyuan, Zhangbei, Shangyi, Wei, Huaian, Chicheng, Guyuan, Kangbao, Yangyuan |
Heilongjiang | 20 | Gannan, Fuyu, Raohe, Fuyuan, Wangkui, Longjiang, Tailai, Kedong, Suibin, Huanan, Huachuan, Tangyuan, Tongjiang, Lanxi, Mingshui, Gangang, Baiquan, Hailun, Lindian, Yanshou |
Henan | 38 | Lankao, Hua, Xin, Shenqiu, Xincai, Luanchuan, Yiyang, Luoning, Fengqiu, Zhenping, Neixiang, Minquan, Sui, Ningling, Zhecheng, Yucheng, Guangshan, Shangcheng, Gushi, Huangchuan, Shangshui, Dancheng, Huaiyang, Taikang, Song, Ruyang, Lushan, Fan, Taiqian, Lushi, Nanzhao, Xichuan, Tongbai, Sheqi, Huaibin, Shangcai, Pingyu, Queshan |
Hubei | 28 | Hongan, Shennongjia, Yangxin, Danjiangkou, Zigui, Baokang, Tuanfeng, Luotian, Yingshan, Xuanen, Laifeng, Hefeng, Yunyang, Yunxi, Zhuxi, Zhushan, Fang, Changyang, Wufeng, Xiaochang, Dawu, Macheng, Qichun, Enshi, Lichuan, Jianshi, Xianfeng, Badong |
Hunan | 40 | Chaling, Yanling, Shimen, Guidong, Zhongfang, Xinshao, Suining, Wugang, Pingjiang, Cili, Anhua, Yizhang, Rucheng, Anren, Jianghua, Chenxi, Hetong, Xinhuang, Zhijiang, Jingzhou, Sangzhi, Luxi, Fenghuang, Huayuan, Baojing, Guzhang, Yongshun, Tongdao, Mayang, Xupu, Yuanling, Xinning, Shaoyang, Longhui, Dongkou, Chengbu, Xinhua, Lianyuan, Longshan, Xintian |
Inner Mongolia | 31 | Linxi, Wuchuan, Balinyou banner, Kalaqin banner, Ningcheng, Horqin Left Wing Back banner, Chahar Right Wing Back Banner, Arshan, Jalaid Banner, Horqin Right Wing Middle Banner, Sonid Right Banner, Oroqen, Molidava Banner, Tuquan, Horqin Right Front Banner, Horqin Left Middle Banner, Kulun flag, Naiman Banner, Ar Horqin Banner, Ongniud Banner, Aohan Banner, Bairin Left Banner, Zhengxiangbai Banner, Taibus Banner, Zhuozi, Chahar Right Front Banner, Shangdu, Xinghe, Chahar Right Middle Banner, Siziwang Banner, Huade |
Jiangxi | 24 | Jinggangshan, Jian, Ruijin, Wanan, Yongxin, Guangchang, Shangrao, Hengfeng, Lianhua, Shangyou, Anyuan, Huichang, Xunwu, Shicheng, Nankang, Suichuan, Lean, Yugan, Xingguo, Yudu, Ningdu, Ganxian, Boyang, Xiushui |
Jilin | 8 | Zhenlai, Longjing, Helong, Jingyu, Tongyu, Wangqing, Antu, Da’an |
Ningxia | 8 | Yanchi, Longde, Jingyuan, Pengyang, Tongxin, Yuanzhou, Haiyuan, Xiji |
Qinghai | 42 | Tongde, Henan, Dulan, Pingan, Xunhua, Gangcha, Golmud, Delingha, Wulan, Tianjun, Datong, Huangzhong, Huangyuan, Huzhu, Menyuan, Qilian, Haiyan, Xinghai, Guinan, Maduo, Yushu, Chindu, Ledu, Minhe, Hualong, Jianzha, Tongren, Zeku, Gonghe, Guide, Jiuzhi, Maqin, Banma, Zhidoi, Zadoi, QumarlêumaNangqian, Gande, Dari, Lenghu, Mangya, Dachaidan |
Shaanxi | 56 | Yanchang, Foping, Hengshan, Dingbian, Zhouzhi, Yijun, Fufeng, Longxian, Qianyang, Linyou, Taibai, Yongshou, Changwu, Xunyi, Chunhua, Heyang, Chengcheng, Pucheng, Fuping, Yanchuan, Yichuan, Liuba, Suide, Mizhi, Wubao, Zhenping, Zhenan, Yintai, Yaozhou, Baishui, Jiaxian, Qingjian, Zizhou, Nanzheng, Chenggu, Yangxian, Xixiang, Mianxian, Ningqiang, Zhenba, Hanbin, Ziyang, Baihe, Ningshan, Lueyang, Xunyang, Pingli, Shiquan, Hanyin, Langao, Shangzhou, Luonan, Danfeng, Shangnan, Shanyang, Zhashui |
Shanxi | 36 | Youyu, Jixian, Zhongyang, Loufan, Yanggao, Lingqiu, Yunzhou (Datong), Wuxiang, Zuoquan, Heshun, Pinglu, Fanshi, Shenchi, Wuzhai, Kelan, Hequ, Baode, Xixian, Lanxian, Fangshan, Guangling, Hunyuan, Tianzhen, Wutai, Huguan, Ningwu, Jingle, Pianguan, Xingxian, Pingshun, Yonghe, Daning, Fenxi, Shilou, Linxian, Daixian |
Sichuan | 66 | Nanbu, Guangan, Beichuan, Muchuan, Jialing, Yilong, Bazhou, Wenchuan, Lixian, Maoxian, Maerkang, Luding, Pingwu, Zhaohua, Chaotian, Qingchuan, Langzhong, Nanjiang, Songpan, Jiuzhaigou, Jinchuan, Xiaojin, Ruoergai, Hongyuan, Kangding, Danba, Jiulong, Xiangcheng, Daocheng, Cangxi, Wangcang, Jiange, Xuanhan, Wanyuan, Pingchang, Tongjiang, Xuyong, Gulin, Mabian, Pingshan, Aba, Rangtang, Heishui, Seda, Shiqu, Litang, Dege, Ganzi, Xinlong, Yajiang, Luhuo, Derong, Daofu, Batang, Baiyu, Leibo, Ganluo, Yanyuan, Muli, Meigu, Butuo, Zhaojue, Jinyang, Xide, Yuexi, Puge |
Tibet | 74 | Chengguan, Yadong, Naidong, Bayi, Karuo, Lhünzhub, Damxung, Nyêmo, Qushui, DoilungdêoilunDagzêagMaizhokunggar, RiwoqêiwoqnqêqwoSangri, Qonggyai, Qusum, Lhozhag, Gyaca, Cona, Bainang, Kangmar, DinggyêinGyirong, Nyalam, Biru, Gar, Gongbujiangda, Mainling, BomêomJomda, Lhorong, Bianba, Zhanang, Konka, Comai, LhünzêzLNagarzêagSangzhuzi, Tingri, Ngamring, Rinbung, Zhongba, Kamba, Lhari, Nyainrong, Anduo, Sog, Bange, Purang, Zanda, Rutog, Medog, Zayüayay, ZaNamling, Saga, Lazi, GyangzêyaXietongmen, Sa’gya, Gonjo, Chagyab, Markam, Zuogong, Basu, Naqu, Baqing, Shenzha, Nyima, Shuanghu, GarzêzGCoqen, Gengya |
Xinjiang | 32 | Minfeng, Qapqal Xibe, Qinghe, Tuoli, Barkoi, Nilka, Jeminay, Akqi, Wuqia, Zepu, Hetianxian, Hetian, Yuepuhu, Shule, Shufu, Bachu, Kashgar, Makit, Tajik, Artux, Wushi, Kalpin, Pishan, Luopu, Qira, Karakax, Yutian, Yecheng, Payzawat, Yengisar, Yarkant, Aketao |
Yunan | 88 | Xundian, Luoping, Yulong, Ninger, Yunxian, Mouding, Yaoan, Shiping, Menghai, Xiangyun, Binchuan, Weishan, Eryuan, Heqing, Mang, Dongchuan, Luquan, Shizong, Fuyuan, Longling, Changning, Suijiang, Weixin, Jinggu, Zhenyuan, Menglian, Ximeng, Linxiang, Fengqing, Zhenkang, Shuangjiang, Gengma, Cangyuan, Shuangbai, Nanhua, Dayao, Yongren, Luxi, Yanshan, Xichou, Mengla, Yangbi, Nanjian, Yongping, Yingjiang, Longchuan, Shangri-La, Deqin, Xuanwei, Shidian, Longyang, Yanjin, Ludian, Zhaoyang, Daguan, Yiliang, Yongshan, Qiaojia, Yongsheng, Jingdong, Mojiang, Jiangcheng, Yongde, Wuding, Honghe, Luchun, Jinping, Wenshan, Malipo, Maguan, Qiubei, Funing, Midu, Yuanyang, Yunlong, Jianchuan, Lianghe, Gongshan, Weixi, Jinze, Zhenxiong, Ninglang, Lancang, Pingbian, Guangnan, Lushui, Fugong, Lanping |
Total | 832 | - |
Appendix B
Year | Gini Coefficient |
---|---|
2003 | 0.479 |
2004 | 0.473 |
2005 | 0.485 |
2006 | 0.487 |
2007 | 0.484 |
2008 | 0.491 |
2009 | 0.49 |
2010 | 0.481 |
2011 | 0.477 |
2012 | 0.474 |
2013 | 0.473 |
2014 | 0.469 |
2015 | 0.462 |
2016 | 0.465 |
2017 | 0.467 |
2018 | 0.468 |
References
- Cingano, F. Trends in Income Inequality and Its Impact on Economic Growth; OECD Social, Employment and Migration Working Papers; OECD: Paris, France, 2014; pp. 1–64. [Google Scholar] [CrossRef]
- Deininger, K.; Olinto, P. Asset Distribution, Inequality, and Growth; The World Bank: Washington, DC, USA, 1999; pp. 1–19. [Google Scholar]
- Jones, C.I. Intermediate goods and weak links in the theory of economic development. Am. Econ. J. Macroecon. 2011, 3, 1–28. [Google Scholar] [CrossRef] [Green Version]
- NBS. China Statistical Yearbook. Available online: http://www.stats.gov.cn/ (accessed on 20 April 2021).
- CHFS; Survey and Research Center for China Household Finance. China Household Finance Survey, CHFS. Available online: https://chfs.swufe.edu.cn/ (accessed on 20 April 2021).
- Calderón, C.; Servén, L. The Efects of Infrastructure Development on Growth and Income Distribution; The World Bank: Washington, DC, USA, 2004; pp. 1–42. [Google Scholar]
- Escribano, A.; Guasch, J.L.; Pena, J. Assessing the Impact of Infrastructure Constraints on Firm Productivity in Africa. Cross-Country Comparisons Based on Investment Climate Surveys from 1999 to 2005; Working Paper 09-86; Economic Series; Departamento de Economia Universidad Carlos III de Madrid: Madrid, Spain, 2009; pp. 11–27. [Google Scholar]
- Hallegatte, S.; Rentschler, J.; Rozenberg, J. Lifelines: The Resilient Infrastructure Opportunity; The World Bank: Washington, DC, USA, 2019; pp. 2–137. [Google Scholar]
- Gertler, P.J.; Lee, K.; Mobarak, A.M. Electricity Reliability and Economic Development in Cities: A Microeconomic Perspective; EEG State-of-Knowledge Paper Series; University of California: Berkeley, CA, USA, 2017; pp. 4–12. [Google Scholar]
- Wenzel, L.; Wolf, A. Protection against Major Catastrophes: An Economic Perspective; HWWI Research Paper; Hamburg Institute of International Economics (HWWI): Hamburg, Germany, 2013; pp. 5–12. [Google Scholar]
- Adenikinju, A.F. Analysis of the Cost of Infrastructure Failures in a Developing Economy: The Case of the Electricity Sector in Nigeria; AERC Research Paper 148; African Economic Research Consortium: Nairobi, Kenya, 2005; pp. 1–31. [Google Scholar]
- Foster, V.; Steinbuks, J. Paying the Price for Unreliable Power Supplies: In-House Generation of Electricity by Firms in Africa; The World Bank: Washington, DC, USA, 2009; pp. 1–26. [Google Scholar]
- Heylen, E.; Ovaere, M.; Proost, S.; Deconinck, G.; Van Hertem, D. Fairness and inequality in power system reliability: Summarizing indices. Electr. Power Syst. Res. 2019, 168, 313–323. [Google Scholar] [CrossRef]
- Strbac, G.; Kirschen, D.; Moreno, R. Reliability Standards for the Operation and Planning of Future Electricity Networks; Now Foundations and Trends: Delft, The Netherlands, 2016; pp. 175–176. [Google Scholar]
- Chen, H.; Chen, X.; Niu, J.; Xiang, M.; He, W.; Küfeoğlu, S. Estimating the marginal cost of reducing power outage durations in China: A parametric distance function approach. Energy Policy 2021, 155, 112366. [Google Scholar] [CrossRef]
- Chen, H.; Liu, S.; Liu, Q.; Shi, X.; Wei, W.; Han, R.; Küfeoğlu, S. Estimating the impacts of climate change on electricity supply infrastructure: A case study of China. Energy Policy 2021, 150, 112119. [Google Scholar] [CrossRef]
- Tang, C.F.; Tan, B.W.; Ozturk, I. Energy consumption and economic growth in Vietnam. Renew. Sustain. Energy Rev. 2016, 54, 1506–1514. [Google Scholar] [CrossRef]
- Adhikari, D.; Chen, Y. Energy consumption and economic growth: A panel cointegration analysis for developing countries. Rev. Econ. Financ. 2013, 3, 68–80. [Google Scholar]
- Ocal, O.; Aslan, A. Renewable energy consumption—Economic growth nexus in Turkey. Renew. Sustain. Energy Rev. 2013, 28, 494–499. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, S. The influence of energy consumption of China on its real GDP from aggregated and disaggregated viewpoints. Energy Policy 2013, 57, 76–81. [Google Scholar] [CrossRef]
- Zhang, X.-P.; Cheng, X.-M. Energy consumption, carbon emissions, and economic growth in China. Ecol. Econ. 2009, 68, 2706–2712. [Google Scholar] [CrossRef]
- Lee, C.-C.; Chang, C.-P. Energy consumption and economic growth in Asian economies: A more comprehensive analysis using panel data. Resour. Energy Econ. 2008, 30, 50–65. [Google Scholar] [CrossRef]
- Hashemi, M.; Jenkins, G.P.; Jyoti, R.; Ozbafli, A. Evaluating the cost to industry of electricity outages. Energy Sources Part B Econ. Plan. Policy 2018, 13, 340–349. [Google Scholar] [CrossRef] [Green Version]
- Andersen, T.B.; Dalgaard, C.-J. Power outages and economic growth in Africa. Energy Econ. 2013, 38, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Arlet, J. Electricity Tariffs, Power Outages and Firm Performance: A Comparative Analysis. In Proceedings of the DECRG Kuala Lumpur Seminar Series, Kuala Lumpur, Malaysia, 19 March 2017; pp. 1–41. [Google Scholar]
- Sun, T.; Wang, X.; Ma, X. Relationship between the economic cost and the reliability of the electric power supply system in city: A case in Shanghai of China. Appl. Energy 2009, 86, 2262–2267. [Google Scholar] [CrossRef]
- Pachauri, S. Energy Inequality. 2014. Available online: https://iiasa.ac.at/web/home/research/alg/energy-inequality.html (accessed on 20 April 2021).
- Ahluwalia, M.S. Inequality, poverty and development. J. Dev. Econ. 1976, 3, 307–342. [Google Scholar] [CrossRef]
- Duncan, G.J.; Murnane, R.J. Whither Opportunity? Rising Inequality, Schools, and Children’s Life Chances; Russell Sage Foundation: New York, NY, USA, 2011; pp. 1–534. [Google Scholar]
- Lynch, J.W.; Smith, G.D.; Kaplan, G.A.; House, J.S. Income inequality and mortality: Importance to health of individual income, psychosocial environment, or material conditions. BMJ 2000, 320, 1200–1204. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Zheng, X.; Wei, C. Measurement of inequality using household energy consumption data in rural China. Nat. Energy 2017, 2, 795–803. [Google Scholar] [CrossRef]
- Bianco, V.; Cascetta, F.; Marino, A.; Nardini, S. Understanding energy consumption and carbon emissions in Europe: A focus on inequality issues. Energy 2019, 170, 120–130. [Google Scholar] [CrossRef]
- Latif, A.; Gawlik, W.; Palensky, P. Quantification and mitigation of unfairness in active power curtailment of rooftop photovoltaic systems using sensitivity based coordinated control. Energies 2016, 9, 436. [Google Scholar] [CrossRef] [Green Version]
- Choe, J. Income inequality and crime in the United States. Econ. Lett. 2008, 101, 31–33. [Google Scholar] [CrossRef]
- Oishi, S.; Kesebir, S.; Diener, E. Income inequality and happiness. Psychol. Sci. 2011, 22, 1095–1100. [Google Scholar] [CrossRef]
- Woldemichael, A.; Takian, A.; Sari, A.A.; Olyaeemanesh, A. Inequalities in healthcare resources and outcomes threatening sustainable health development in Ethiopia: Panel data analysis. BMJ Open 2019, 9, e022923. [Google Scholar] [CrossRef] [Green Version]
- Shkolnikov, V.M.; Andreev, E.E.; Begun, A.Z. Gini coefficient as a life table function: Computation from discrete data, decomposition of differences and empirical examples. Demogr. Res. 2003, 8, 305–358. [Google Scholar] [CrossRef] [Green Version]
- Hörcher, D.; Graham, D.J. The Gini index of demand imbalances in public transport. Transportation 2020. [Google Scholar] [CrossRef]
- Lawrence, S.; Liu, Q.; Yakovenko, V.M. Global inequality in energy consumption from 1980 to 2010. Entropy 2013, 15, 5565–5579. [Google Scholar] [CrossRef] [Green Version]
- Groot, L. Carbon lorenz curves. Resour. Energy Econ. 2010, 32, 45–64. [Google Scholar] [CrossRef]
- Breton, T.R. Can institutions or education explain world poverty? An augmented Solow model provides some insights. J. Socio Econ. 2004, 33, 45–69. [Google Scholar] [CrossRef]
- Fang, Y. Economic welfare impacts from renewable energy consumption: The China experience. Renew. Sustain. Energy Rev. 2011, 15, 5120–5128. [Google Scholar] [CrossRef]
- Ibragimov, Z.; Vasylieva, T.A.; Liulov, O.V. The national economy competitiveness: Effect of macroeconomic stability, renewable energy on economic growth. In Proceedings of the Socio Economic Problems of Sustainable Development—37th International Scientific Conference on Economic and Social Development, Baku, Azerbaijan, 14–15 February 2019; pp. 878–887. [Google Scholar]
- Mensah, J.T. Bring back our light: Power outages and industrial performance in sub-Saharan Africa. In Proceedings of the AAEA 2016 Annual Meeting, Boston, MA, USA, 31 July–2 August 2016; pp. 1–28. [Google Scholar]
- World Bank. World Development Report 1994: Infrastructure for Development; Oxford University Press: New York, NY, USA, 1994; pp. 252–257. [Google Scholar]
- Matthewman, S.; Byrd, H. Blackouts: A Sociology of Electrical Power Failure. Social Space 2013, 6, 1–25. [Google Scholar]
- World Bank Group. State of Electricity Access Report 2017 (Vol. 2): Full Report (English). Available online: http://documents.worldbank.org/curated/en/364571494517675149/full-report (accessed on 20 April 2021).
- Ackah, C.G.; Asuming, P.O.; Abudu, D. Misallocation of Resources and Productivity: The Case of Ghana; Institute of Statistical, Social and Economic Research, University of Ghana: Accra, Ghana, 2018; pp. 1–20. [Google Scholar]
- Fisher-Vanden, K.; Mansur, E.T.; Wang, Q.J. Costly Blackouts? Measuring Productivity and Environmental Effects of Electricity Shortages; 0898-2937; National Bureau of Economic Research: Cambridge, MA, USA, 2012; pp. 1–29. [Google Scholar]
- Doing Business. Getting Electricity. Available online: https://www.doingbusiness.org/en/data/exploretopics/getting-electricity (accessed on 27 May 2021).
- NBS. China City Statistical Yearbook. Available online: http://www.stats.gov.cn/ (accessed on 20 April 2021).
- NBS. Statistical Yearbook of the Chinese Investment in Fixed Assets. Available online: http://www.stats.gov.cn/ (accessed on 20 April 2021).
- NEA. Power Reliability Index Report of Prefecture Level Cities. Available online: http://www.nea.gov.cn/ (accessed on 20 April 2021).
- NEA. Annual Report of National Power Reliability. Available online: http://www.nea.gov.cn/ (accessed on 20 April 2021).
- NBS. China Yearbook of Household Survey. Available online: http://www.stats.gov.cn/ (accessed on 20 April 2021).
Variable | Index | Units | Data Sources |
---|---|---|---|
Y | GDP | CNY ten thousand | NBS [51] |
K | Gross Domestic Fixed Capital Formation (GDFCF) | CNY ten thousand | NBS [51], NBS [52] |
L | Quantity of labor force | Ten thousand | NBS [51] |
ESQ | SAIDI | Hours/household | NEA [53], NEA [54] |
ESQ’ | SAIFI | Times/household |
Variable | Min | Max | Mean | Std. Dev. | Observations |
---|---|---|---|---|---|
lnY | 3.685 | 10.459 | 7.279 | 1.095 | 337 |
lnK | 3.634 | 9.673 | 6.647 | 1.020 | 337 |
lnL | 1.878 | 7.359 | 4.421 | 0.914 | 301 |
lnESQ (SAIDI) | −0.020 | 4.163 | 2.768 | 0.540 | 337 |
lnESQ’ (SAIFI) | −1.609 | 3.463 | 1.135 | 0.624 | 337 |
Variable | Model 1 | Model 2 |
---|---|---|
lnY | lnY | |
lnK | 0.413 *** | 0.411 *** |
(0.033) | (0.033) | |
lnL | 0.598 *** | 0.612 *** |
(0.036) | (0.035) | |
lnESQ | −0.142 *** | |
(0.041) | ||
lnESQ’ | −0.108 *** | |
(0.033) | ||
Constant | 2.381 *** | 2.065 *** |
(0.226) | (0.164) | |
N | 301 | 301 |
Adj. R2 | 0.915 | 0.914 |
Variable | North China | Central China | Northeast China | East China | Northwest China | Southwest China |
---|---|---|---|---|---|---|
lnK | 0.733 *** | 0.495 *** | 0.285 *** | 0.625 *** | 0.233 *** | 0.546 *** |
(0.109) | (0.086) | (0.067) | (0.067) | (0.065) | (0.086) | |
lnL | 0.247 * | 0.402 *** | 0.771 *** | 0.452 *** | 0.815 *** | 0.500 *** |
(0.130) | (0.077) | (0.107) | (0.058) | (0.108) | (0.080) | |
lnESQ | −0.030 | −0.286 *** | −0.452 ** | −0.146 * | 0.021 | −0.100 * |
(0.125) | (0.082) | (0.181) | (0.082) | (0.130) | (0.059) | |
Constant | 1.621 ** | 3.179 *** | 3.332 *** | 1.600 *** | 2.089 *** | 1.679 *** |
(0.711) | (0.547) | (0.652) | (0.427) | (0.682) | (0.461) | |
Adj R-squared | 0.848 | 0.909 | 0.906 | 0.956 | 0.906 | 0.932 |
Variable | Trimmed 1% at Each End | Trimmed 5% at Each End |
---|---|---|
lnY | lnY | |
lnK | 0.409 *** | 0.410 *** |
(0.033) | (0.034) | |
lnL | 0.588 *** | 0.586 *** |
(0.036) | (0.039) | |
lnESQ | −0.182 *** | −0.152 * |
(0.048) | (0.058) | |
Constant | 2.559 *** | 2.491 *** |
(0.249) | (0.271) | |
Adj-R-squared | 0.914 | 0.887 |
Scenario | Interpretation |
---|---|
A | Improve the city-level ESQ of 832 national-level poor counties to the average value of ESQ of the others, if the former is lower. |
B | Improve the ESQ of nine provinces in the Silk Road Economic Belt to 99.8%. |
C | Improve the ESQ of cities to the average value of the average of the rural ESQ, if the former is lower. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Wang, M. How Will the Improvements of Electricity Supply Quality in Poor Regions Reduce the Regional Economic Gaps? A Case Study of China. Energies 2021, 14, 3456. https://doi.org/10.3390/en14123456
Zhang B, Wang M. How Will the Improvements of Electricity Supply Quality in Poor Regions Reduce the Regional Economic Gaps? A Case Study of China. Energies. 2021; 14(12):3456. https://doi.org/10.3390/en14123456
Chicago/Turabian StyleZhang, Boyan, and Mingming Wang. 2021. "How Will the Improvements of Electricity Supply Quality in Poor Regions Reduce the Regional Economic Gaps? A Case Study of China" Energies 14, no. 12: 3456. https://doi.org/10.3390/en14123456
APA StyleZhang, B., & Wang, M. (2021). How Will the Improvements of Electricity Supply Quality in Poor Regions Reduce the Regional Economic Gaps? A Case Study of China. Energies, 14(12), 3456. https://doi.org/10.3390/en14123456