A Combined Fuzzy GMDH Neural Network and Grey Wolf Optimization Application for Wind Turbine Power Production Forecasting Considering SCADA Data
Abstract
:1. Introduction
- (a)
- K-means is one of the most well-known clustering methods, a fast and efficient technique in unsupervised learning methods. However, it suffers from some deficiencies such as (i) predefining the number of clusters and centers in advance, (ii) not being able to handle noisy data and outliers properly, and finally, k-means is not proper to classify clusters with non-convex shapes. In order to deal with these listed issues, we proposed a combination of identifying density-based local outliers (LOF) and k-means for cleaning the raw supervisory control and data acquisition (SCADA) data as the initial section of the pre-processing.
- (b)
- As wind speed and power forecasting involve the non-linear power curve, stochastic and noisy behavior of the recorded wind data, the empirical mode decomposition (EMD) method is proposed to deal with these uncertainties and increase the modelling accuracy.
- (c)
- Fuzzy-GMDH neural networks are considered as one of the most effective methods to model the time-series data with high-level noise and short input sampling. However, initializing the hyper-parameters of fuzzy-GMDH is challenging and time-consuming. With regards to adjusting the hyper-parameters, we apply a robust and fast search method called the grey wolf optimization (GWO) algorithm. Applying the GWO as a hyper-parameter tuner improved the proposed model’s accuracy and reliability to forecast wind power.
- (d)
- The proposed combined forecasting model has successfully verified on two actual wind turbines SCADA datasets. In addition, the proposed forecasting model is compared with the other valid combined forecasting models.
2. Materials and Methods
2.1. SCADA System
2.2. Proposed Wind Power Forecasting Strategy
2.3. Data Cleaning
2.4. Empirical Mode Decomposition
2.5. Fuzzy-GMDH Model
2.6. Gray Wolf Optimization
2.7. Error Indicators
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Okumus, I.; Dinler, A. Current status of wind energy forecasting and a hybrid method for hourly predictions. Energy Convers. Manag. 2016, 123, 362–371. [Google Scholar] [CrossRef]
- Zhao, Y.; Ye, L.; Li, Z.; Song, X.; Lang, Y.; Su, J. A novel bidirectional mechanism based on time series model for wind power forecasting. Appl. Energy 2016, 177, 793–803. [Google Scholar] [CrossRef]
- Karki, R.; Hu, P.; Billinton, R. A simplified wind power generation model for reliability evaluation. IEEE Trans. Energy Convers. 2006, 21, 533–540. [Google Scholar] [CrossRef]
- Li, S.; Wunsch, D.C.; O’Hair, E.A.; Giesselmann, M.G. Using neural networks to estimate wind turbine power generation. IEEE Trans. Energy Convers. 2001, 16, 276–282. [Google Scholar] [CrossRef]
- Xia, S.; Chan, K.W.; Luo, X.; Bu, S.; Ding, Z.; Zhou, B. Optimal sizing of energy storage system and its cost-benefit analysis for power grid planning with intermittent wind generation. Renew. Energy 2018, 122, 472–486. [Google Scholar] [CrossRef]
- Akçay, H.; Filik, T. Short-term wind speed forecasting by spectral analysis from long-term observations with missing values. Appl. Energy 2017, 191, 653–662. [Google Scholar] [CrossRef]
- Toh, G.K.; Gooi, H.B. Incorporating forecast uncertainties into EENS for wind turbine studies. Electr. Power Syst. Res. 2011, 81, 430–439. [Google Scholar] [CrossRef]
- Ortega-Vazquez, M.A.; Kirschen, D.S. Estimating the spinning reserve requirements in systems with significant wind power generation penetration. IEEE Trans. Power Syst. 2009, 24, 114–124. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, B.; Li, H.; Li, Z.; Chen, Y.; Miao, X. Statistical distribution for wind power forecast error and its application to determine optimal size of energy storage system. Int. J. Electr. Power Energy Syst. 2014, 55, 100–107. [Google Scholar] [CrossRef]
- Usaola, J. Probabilistic load flow with correlated wind power injections. Electr. Power Syst. Res. 2010, 80, 528–536. [Google Scholar] [CrossRef]
- Balasubramaniam, K.; Saraf, P.; Hadidi, R.; Makram, E.B. Energy management system for enhanced resiliency of microgrids during islanded operation. Electr. Power Syst. Res. 2016, 137, 133–141. [Google Scholar] [CrossRef]
- Bruninx, K.; Delarue, E. A statistical description of the error on wind power forecasts for probabilistic reserve sizing. IEEE Trans. Sustain. Energy 2014, 5, 995–1002. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Sun, Y.Z.; Gao, D.W.; Lin, J.; Cheng, L. A versatile probability distribution model for wind power forecast errors and its application in economic dispatch. IEEE Trans. Power Syst. 2013, 28, 3114–3125. [Google Scholar] [CrossRef]
- Tascikaraoglu, A.; Sanandaji, B.M.; Chicco, G.; Cocina, V.; Spertino, F.; Erdinc, O.; Paterakis, N.G.; Catalao, J.P. A short-term spatio-temporal approach for Photovoltaic power forecasting. In Proceedings of the 2016 Power Systems Computation Conference (PSCC), Genoa, Italy, 20–24 June 2016. [Google Scholar] [CrossRef]
- Li, S.; Dong, W.; Huang, J.; Wu, Z.; Zhang, H. Wind power system reliability sensitivity analysis by considering forecast error based on non-standard third-order polynomial normal transformation method. Electr. Power Syst. Res. 2019, 167, 122–129. [Google Scholar] [CrossRef]
- Heydari, A.; Astiaso Garcia, D.; Keynia, F.; Bisegna, F.; De Santoli, L. A novel composite neural network based method for wind and solar power forecasting in microgrids. Appl. Energy 2019, 251, 113353. [Google Scholar] [CrossRef]
- Cui, Y.; Bangalore, P.; Bertling Tjernberg, L. An Anomaly Detection Approach Based on Machine Learning and SCADA Data for Condition Monitoring of Wind Turbines. In Proceedings of the 2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Boise, ID, USA, 24–28 June 2018; pp. 1–6. [Google Scholar]
- Heydari, A.; Keynia, F. A new intelligent heuristic combined method for short-term electricity price forecasting in deregulated markets. Aust. J. Electr. Electron. Eng. 2016, 13, 258–267. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Zhang, K. Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm. Electr. Power Syst. Res. 2017, 146, 270–285. [Google Scholar] [CrossRef]
- Kouhi, S.; Keynia, F.; Najafi Ravadanegh, S. A new short-term load forecast method based on neuro-evolutionary algorithm and chaotic feature selection. Int. J. Electr. Power Energy Syst. 2014, 62, 862–867. [Google Scholar] [CrossRef]
- Amjady, N.; Keynia, F.; Zareipour, H. Short-term wind power forecasting using ridgelet neural network. Electr. Power Syst. Res. 2011, 81, 2099–2107. [Google Scholar] [CrossRef]
- Han, Q.; Meng, F.; Hu, T.; Chu, F. Non-parametric hybrid models for wind speed forecasting. Energy Convers. Manag. 2017, 148, 554–568. [Google Scholar] [CrossRef]
- Pelajo, J.C.; Brandão, L.E.T.; Gomes, L.L.; Klotzle, M.C. Wind farm generation forecast and optimal maintenance schedule model. Wind Energy 2019, 22, 1872–1890. [Google Scholar] [CrossRef]
- Osório, G.J.O.; Matias, J.C.O.; Catalão, J.P.S. Hybrid evolutionary-adaptive approach to predict electricity prices and wind power in the short-term. In Proceedings of the 2014 Power Systems Computation Conference, Wroclaw, Poland, 18–22 August 2014. [Google Scholar] [CrossRef]
- Gallego-Castillo, C.; Cuerva-Tejero, A.; Bessa, R.J.; Cavalcante, L. Wind power probabilistic forecast in the reproducing kernel Hilbert space. In Proceedings of the 2016 Power Systems Computation Conference (PSCC), Genoa, Italy, 11 August 2016; pp. 1–7. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Shao, W.; Yu, M.; Ma, J.; Jin, C. Research and application of a hybrid wavelet neural network model with the improved cuckoo search algorithm for electrical power system forecasting. Appl. Energy 2017, 198, 203–222. [Google Scholar] [CrossRef]
- Shi, K.; Qiao, Y.; Zhao, W.; Wang, Q.; Liu, M.; Lu, Z. An improved random forest model of short-term wind-power forecasting to enhance accuracy, efficiency, and robustness. Wind Energy 2018, 21, 1383–1394. [Google Scholar] [CrossRef]
- Doan, V.Q.; Kusaka, H.; Matsueda, M.; Ikeda, R. Application of mesoscale ensemble forecast method for prediction of wind speed ramps. Wind Energy 2019, 22, 499–508. [Google Scholar] [CrossRef]
- Duan, J.; Wang, P.; Ma, W.; Tian, X.; Fang, S.; Cheng, Y. Short-term wind power forecasting using the hybrid model of improved variational mode decomposition and Correntropy Long Short -term memory neural network. Energy 2021, 214, 118980. [Google Scholar] [CrossRef]
- Yildiz, C.; Acikgoz, H.; Korkmaz, D.; Budak, U. An improved residual-based convolutional neural network for very short-term wind power forecasting. Energy Convers. Manag. 2021, 228, 113731. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Manjili, S.; Mardani, A.; Kamali, M. An extended new approach for forecasting short-term wind power using modified fuzzy wavelet neural network: A case study in wind power plant. Energy 2021, 223, 120052. [Google Scholar] [CrossRef]
- Groppi, D.; De Santoli, L.; Cumo, F.; Astiaso Garcia, D. A GIS-based model to assess buildings energy consumption and usable solar energy potential in urban areas. Sustain. Cities Soc. 2018, 40, 546–558. [Google Scholar] [CrossRef]
- De Santoli, L.; Mancini, F.; Astiaso Garcia, D. A GIS-based model to assess electric energy consumptions and usable renewable energy potential in Lazio region at municipality scale. Sustain. Cities Soc. 2019, 46, 101413. [Google Scholar] [CrossRef] [Green Version]
- Mancini, F.; Nastasi, B. Solar energy data analytics: PV deployment and land use. Energies 2020, 13, 417. [Google Scholar] [CrossRef] [Green Version]
- Nastasi, B.; De Santoli, L.; Albo, A.; Bruschi, D.; Lo Basso, G. RES (Renewable Energy Sources ) availability assessments for Eco- fuels production at local scale: Carbon avoidance costs associated to a hybrid biomass/H 2 NG-based energy scenario. Energy Procedia 2015, 81, 1069–1076. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Cui, Y.; Bertling Tjernberg, L.; Bangalore, P. Wind turbine health assessment framework based on power analysis using machine learning method. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), Bucharest, Romania, 29 September–2 October 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Breuniq, M.M.; Kriegel, H.P.; Ng, R.T.; Sander, J. LOF: Identifying density-based local outliers. SIGMOD Rec. (ACM Spec. Interes. Gr. Manag. Data) 2000, 29, 93–104. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Huang, N.E.; Wu, M.L.; Qu, W.; Long, S.R.; Shen, S.S.P. Applications of Hilbert-Huang transform to non-stationary financial time series analysis. Appl. Stoch. Model. Bus. Ind. 2003, 19, 245–268. [Google Scholar] [CrossRef]
- Ohtani, T.; Ichihashi, H.; Miyoshi, T.; Nagasaka, K. Orthogonal and successive projection methods for the learning of neurofuzzy GMDH. Inf. Sci. 1998, 110, 5–24. [Google Scholar] [CrossRef]
- Najafzadeh, M. Neurofuzzy-based GMDH-PSO to predict maximum scour depth at equilibrium at culvert outlets. J. Pipeline Syst. Eng. Pr. 2016, 7, 06015001. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Wang, J.; Lu, H. A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting. Appl. Energy 2018, 215, 643–658. [Google Scholar] [CrossRef]
- Keynia, F. A new feature selection algorithm and composite neural network for electricity price forecasting. Eng. Appl. Artif. Intell. 2012, 25, 1687–1697. [Google Scholar] [CrossRef]
- Amjady, N.; Keynia, F. Application of a new hybrid neuro-evolutionary system for day-ahead price forecasting of electricity markets. Appl. Soft Comput. 2010, 10, 784–792. [Google Scholar] [CrossRef]
- Amjady, N.; Keynia, F. Day ahead price forecasting of electricity markets by a mixed data model and hybrid forecast method. Int. J. Electr. Power Energy Syst. 2008, 30, 533–546. [Google Scholar] [CrossRef]
Forecasting Models | Time Step | Error Criteria | |||||||
---|---|---|---|---|---|---|---|---|---|
RMSE | SSE | MAE | MAPE | ||||||
WT1 | WT2 | WT1 | WT2 | WT1 | WT2 | WT1 | WT2 | ||
GRNN | 10-min | 0.315 | 0.29 | 125.011 | 102.29 | 0.299 | 0.265 | 18.516 | 20.818 |
1-h | 0.381 | 0.387 | 133.366 | 124.971 | 0.312 | 0.365 | 21.815 | 22.716 | |
FGMDH | 10-min | 0.236 | 0.241 | 18.533 | 19.084 | 0.217 | 0.228 | 9.232 | 11.883 |
1-h | 0.288 | 0.272 | 64.265 | 54.079 | 0.276 | 0.231 | 10.237 | 12.11 | |
MI-CNN [44] | 10-min | 0.056 | 0.072 | 13.35 | 12.816 | 0.045 | 0.033 | 4.262 | 3.981 |
1-h | 0.094 | 0.085 | 40.58 | 41.732 | 0.068 | 0.038 | 4.837 | 5.002 | |
MRMR-HNES [45] | 10-min | 0.149 | 0.184 | 11.922 | 9.818 | 0.143 | 0.166 | 4.523 | 5.105 |
1-h | 0.167 | 0.202 | 44.514 | 51.165 | 0.149 | 0.171 | 5.592 | 5.235 | |
MI-CNEA [46] | 10-min | 0.225 | 0.219 | 14.368 | 13.127 | 0.215 | 0.187 | 6.815 | 5.754 |
1-h | 0.253 | 0.226 | 53.122 | 56.464 | 0.224 | 0.203 | 6.94 | 7.402 | |
Proposed Model | 10-min | 0.013 | 0.013 | 10.706 | 8.069 | 0.012 | 0.01 | 2.856 | 3.012 |
1-h | 0.026 | 0.024 | 36.594 | 34.079 | 0.032 | 0.012 | 3.208 | 3.516 |
Different Seasons | Error Criteria | GRNN | FGMDH | MI CNN [44] | MRMR HNES [45] | MI CNEA [46] | Proposed Model | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1-h | 10-min | 1-h | 10-min | 1-h | 10-min | 1-h | 10-min | 1-h | 10-min | 1-h | 10-min | ||
Winter | RMSE | 0.482 | 0.414 | 0.326 | 0.318 | 0.122 | 0.083 | 0.173 | 0.153 | 0.262 | 0.226 | 0.015 | 0.013 |
SSE | 171.315 | 46.555 | 37.336 | 16.265 | 19.820 | 9.352 | 28.819 | 11.474 | 22.872 | 13.077 | 17.634 | 6.317 | |
MAE | 0.445 | 0.396 | 0.306 | 0.277 | 0.079 | 0.049 | 0.147 | 0.144 | 0.229 | 0.224 | 0.013 | 0.012 | |
MAPE | 22.458 | 23.572 | 12.536 | 9.844 | 5.315 | 4.747 | 6.939 | 4.478 | 10.392 | 6.748 | 3.937 | 2.504 | |
Spring | RMSE | 0.383 | 0.401 | 0.309 | 0.298 | 0.110 | 0.086 | 0.163 | 0.147 | 0.244 | 0.232 | 0.014 | 0.012 |
SSE | 131.719 | 51.513 | 40.546 | 15.327 | 19.608 | 7.342 | 33.549 | 11.493 | 28.090 | 14.120 | 11.519 | 5.306 | |
MAE | 0.363 | 0.359 | 0.284 | 0.275 | 0.074 | 0.054 | 0.147 | 0.138 | 0.222 | 0.208 | 0.019 | 0.012 | |
MAPE | 20.445 | 19.819 | 15.049 | 11.818 | 5.369 | 4.953 | 7.258 | 4.746 | 10.849 | 7.153 | 4.125 | 2.263 | |
Summer | RMSE | 0.341 | 0.313 | 0.302 | 0.291 | 0.081 | 0.064 | 0.169 | 0.143 | 0.253 | 0.246 | 0.014 | 0.012 |
SSE | 121.481 | 37.914 | 41.151 | 13.011 | 12.780 | 5.311 | 13.907 | 7.453 | 28.994 | 12.030 | 11.134 | 3.006 | |
MAE | 0.313 | 0.264 | 0.274 | 0.288 | 0.055 | 0.040 | 0.148 | 0.143 | 0.223 | 0.216 | 0.017 | 0.012 | |
MAPE | 21.516 | 16.607 | 15.479 | 13.454 | 6.349 | 4.348 | 8.583 | 4.944 | 9.810 | 7.450 | 4.019 | 3.917 | |
Fall | RMSE | 0.372 | 0.328 | 0.285 | 0.268 | 0.118 | 0.074 | 0.163 | 0.162 | 0.247 | 0.244 | 0.018 | 0.014 |
SSE | 91.819 | 34.725 | 53.183 | 26.130 | 22.378 | 9.427 | 24.238 | 10.587 | 37.390 | 18.337 | 13.238 | 6.263 | |
MAE | 0.415 | 0.307 | 0.239 | 0.234 | 0.080 | 0.040 | 0.161 | 0.137 | 0.243 | 0.207 | 0.015 | 0.014 | |
MAPE | 24.160 | 18.504 | 18.710 | 11.366 | 7.419 | 3.498 | 8.141 | 4.119 | 10.487 | 6.214 | 3.015 | 2.903 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heydari, A.; Majidi Nezhad, M.; Neshat, M.; Garcia, D.A.; Keynia, F.; De Santoli, L.; Bertling Tjernberg, L. A Combined Fuzzy GMDH Neural Network and Grey Wolf Optimization Application for Wind Turbine Power Production Forecasting Considering SCADA Data. Energies 2021, 14, 3459. https://doi.org/10.3390/en14123459
Heydari A, Majidi Nezhad M, Neshat M, Garcia DA, Keynia F, De Santoli L, Bertling Tjernberg L. A Combined Fuzzy GMDH Neural Network and Grey Wolf Optimization Application for Wind Turbine Power Production Forecasting Considering SCADA Data. Energies. 2021; 14(12):3459. https://doi.org/10.3390/en14123459
Chicago/Turabian StyleHeydari, Azim, Meysam Majidi Nezhad, Mehdi Neshat, Davide Astiaso Garcia, Farshid Keynia, Livio De Santoli, and Lina Bertling Tjernberg. 2021. "A Combined Fuzzy GMDH Neural Network and Grey Wolf Optimization Application for Wind Turbine Power Production Forecasting Considering SCADA Data" Energies 14, no. 12: 3459. https://doi.org/10.3390/en14123459
APA StyleHeydari, A., Majidi Nezhad, M., Neshat, M., Garcia, D. A., Keynia, F., De Santoli, L., & Bertling Tjernberg, L. (2021). A Combined Fuzzy GMDH Neural Network and Grey Wolf Optimization Application for Wind Turbine Power Production Forecasting Considering SCADA Data. Energies, 14(12), 3459. https://doi.org/10.3390/en14123459