Heat Mapping, a Method for Enhancing the Sustainability of the Smart District Heat Networks
Abstract
:1. Introduction
2. Background
District Heat Network (DHN)
3. Methods and Datasets
3.1. The Case Study
3.2. Visualizing Current TCD Campus Heating Method
3.3. Assessment of Heat Losses at TCD Campus
3.4. Calculation of Thermal Demand
3.5. Development of the Smart District Heating Network (SDHN) Dataset
4. Results and Discussion
Monthly Heat Maps for TCD Campus
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IEA. World Energy Outlook. 2020. Available online: https://www.iea.org/reports/world-energy-outlook-2020 (accessed on 12 July 2021).
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Tooke, T.R.; van der Laan, M.; Coops, N.C. Mapping demand for residential building thermal energy services using airborne LiDAR. Appl. Energy 2014, 127, 125–134. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Renewable Energy in District Heating and Cooling a Sector Roadmap for Remap; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2017. [Google Scholar]
- Nussbaumer, T.; Thalmann, S. Influence of system design on heat distribution costs in district heating. Energy 2016, 101, 496–505. [Google Scholar] [CrossRef]
- Lund, H.; Werner, S.; Wiltshire, R.; Svendsen, S.; Thorsen, J.E.; Hvelplund, F.; Mathiesen, B.V. 4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems. Energy 2014, 68, 1–11. [Google Scholar] [CrossRef]
- Østergaard, D.; Svendsen, S. Space heating with ultra-low-temperature district heating—A case study of four single-family houses from the 1980s. Energy Procedia 2017, 116, 226–235. [Google Scholar] [CrossRef]
- Jansen, S.; Mohammadi, S.; Bokel, R. Developing a locally balanced energy system for an existing neighbourhood, using the ‘Smart Urban Isle’ approach. Sustain. Cities Soc. 2021, 64, 102496. [Google Scholar] [CrossRef]
- Buffa, S.; Cozzini, M.; D’Antoni, M.; Baratieri, M.; Fedrizzi, R. 5th generation district heating and cooling systems: A review of existing cases in Europe. Renew. Sustain. Energy Rev. 2019, 104, 504–522. [Google Scholar] [CrossRef]
- Boesten, S.; Ivens, W.; Dekker, S.C.; Eijdems, H. 5th generation district heating and cooling systems as a solution for renewable urban thermal energy supply. Adv. Geosci. 2019, 49, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Lund, H.; Østergaard, P.A.; Nielsen, T.B.; Werner, S.; Thorsen, J.E.; Gudmundsson, O.; Arabkoohsar, A.; Mathiesen, B.V. Perspectives on fourth and fifth generation district heating. Energy 2021, 227, 120520. [Google Scholar] [CrossRef]
- Gartland, D. Dublin City Spatial Energy Demand Analysis; Codema in Association with Dublin City Council 2015; Codema: Dublin, Ireland, 2015. [Google Scholar]
- Connolly, D.; Lund, H.; Mathiesen, B.V.; Werner, S.; Möller, B.; Persson, U.; Boermans, T.; Trier, D.; Østergaard, P.A.; Nielsen, S. Heat roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system. Energy Policy 2014, 65, 475–489. [Google Scholar] [CrossRef]
- Möller, B.; Wiechers, E.; Persson, U.; Grundahl, L.; Connolly, D. Heat Roadmap Europe: Identifying local heat demand and supply areas with a European thermal atlas. Energy 2018, 158, 281–292. [Google Scholar] [CrossRef]
- David, A.; Mathiesen, B.V.; Averfalk, H.; Werner, S.; Lund, H. Heat Roadmap Europe: Large-scale electric heat pumps in district heating systems. Energies 2017, 10, 578. [Google Scholar] [CrossRef] [Green Version]
- Morvaj, B.; Evins, R.; Carmeliet, J. Optimising urban energy systems: Simultaneous system sizing, operation and district heating network layout. Energy 2016, 116, 619–636. [Google Scholar] [CrossRef]
- Wang, D.; Orehounig, K.; Carmeliet, J. Investigating the potential for district heating networks with locally integrated solar thermal energy supply. Energy Procedia 2017, 122, 1057–1062. [Google Scholar] [CrossRef]
- Törnros, T.; Resch, B.; Rupp, M.; Gündra, H. Geospatial analysis of the building heat demand and distribution losses in a district heating network. Int. J. Geo-Inf. 2016, 5, 219. [Google Scholar] [CrossRef] [Green Version]
- Chicherin, S.; Anvari-Moghaddam, A. Adjusting heat demands using the operational data of district heating systems. Energy 2021, 235, 121368. [Google Scholar] [CrossRef]
- Björnebo, L.; Spatari, S.; Gurian, P.L. A greenhouse gas abatement framework for investment in district heating. Appl. Energy 2018, 211, 1095–1105. [Google Scholar] [CrossRef]
- Arabkoohsar, A.; Alsagri, A.S. A new generation of district heating system with neighborhood-scale heat pumps and advanced pipes, a solution for future renewable-based energy systems. Energy 2020, 193, 116781. [Google Scholar] [CrossRef]
- Volkova, A.; Masatin, V.; Siirde, A. Methodology for evaluating the transition process dynamics towards 4th generation district heating networks. Energy 2018, 150, 253–261. [Google Scholar] [CrossRef]
- Jangsten, M.; Lindholm, T.; Dalenbäck, J.O. Analysis of operational data from a district cooling system and its connected buildings. Energy 2020, 203, 117844. [Google Scholar] [CrossRef]
- Dominkovic, D.F.; Stunjek, G.; Blanco, I.; Madsen, H.; Krajacic, G. Technical, economic and environmental optimization of district heating expansion in an urban agglomeration. Energy 2020, 197, 117243. [Google Scholar] [CrossRef]
- Dorotic, H.; Puksec, T.; Duic, N. Multi-objective optimization of district heating and cooling systems for a one-year time horizon. Energy 2019, 169, 319e28. [Google Scholar] [CrossRef]
- Kazagic, A.; Merzic, A.; Redzic, E.; Tresnjo, D. Optimization of modular district heating solution based on CHP and RES—Demonstration case of the Municipality of Visoko. Energy 2019, 181, 56–65. [Google Scholar] [CrossRef]
- Jebamalai, J.M.; Marlein, K.; Laverge, J. Influence of centralized and distributed thermal energy storage on district heating network design. Energy 2020, 202, 117689. [Google Scholar] [CrossRef]
- Junussova, L.; Zhuikov, A.; Matiushenko, A.; Chicherin, S.; Ilicheva, A. Assessing building energy efficiency with the help of specific heat demand characteristics: Boreal regions of Russia case study. E3S Web Conf. 2020, 208. [Google Scholar] [CrossRef]
- Harney, P.; Gartland, D.; Murphy, F. Determining the optimum low-temperature district heating network design for a secondary network supplying a low energy use apartment block in Ireland. Energy 2020, 192, 116595. [Google Scholar] [CrossRef]
- Fry, N.A. Building-level heat demand mapping of commercial-residential areas for simulated district heating assessments in Montana, Idaho, and Washington. Energy Build. 2021, 245, 111075. [Google Scholar] [CrossRef]
- Chartered Institution of Building Services Engineers. CIBSE TM46; Chartered Institution of Building Services Engineers: London, UK, 2008. [Google Scholar]
- Hanmer, C.; Shipworth, M.; Shipworth, D.; Carter, E. How household thermal routines shape UK home heating demand patterns. Energy Effic. 2019, 12, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Franzoi, N.; Prada, A.; Verones, S.; Baggio, P. Enhancing PV self-consumption through energy communities in heating-dominated climates. Energies 2021, 14, 4165. [Google Scholar] [CrossRef]
- Mbiydzenyuy, G.; Nowaczyk, S.; Knutsson, H.; Vanhoudt, D.; Brage, J.; Calikus, E. Opportunities for machine learning in district heating. Appl. Sci. 2021, 11, 6112. [Google Scholar] [CrossRef]
- Steininger, P.; Gaderer, M.; Dawoud, B. Assessment of the annual transmission heat loss reduction of a refurbished existing building with an advanced solar selective thermal insulation system. Sustainability 2021, 13, 7336. [Google Scholar] [CrossRef]
- Manfren, M.; Nastasi, B.; Groppi, D.; Garcia, D.A. Open data and energy analytics—An analysis of essential information for energy system planning, design and operation. Energy 2020, 213, 118803. [Google Scholar] [CrossRef]
- Trinity College Dublin. About Trinity, History. 2016. Available online: http://www.tcd.ie/about/history/ (accessed on 20 May 2016).
- United Nations Environment Programme (UNEP); Copenhagen Centre on Energy Efficiency; UNHABITAT. District Energy in Cities; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Vaisi, S.; Mohammadi, S.; Nastasi, B.; Javanroodi, K. A new generation of thermal energy benchmarks for university buildings. Energies 2020, 13, 6606. [Google Scholar] [CrossRef]
- Vaisi, S.; Pilla, F.; McCormack, S.J. Recommending a thermal energy benchmark based on CIBSE TM46 for typical college buildings and creating monthly energy models. Energy Build. 2018, 176, 296–309. [Google Scholar] [CrossRef]
- Estates and Facilities Department TCD. 2016. Available online: https://www.tcd.ie/Buildings/contactus.php.Cylon (accessed on 16 July 2018).
- Cylon Active Energy Management. Available online: https://cylonaem.com/energy/#v=1&t=9&c=0.1 (accessed on 11 March 2015).
Building Name | Footprint Area (m2) | Thermal Energy Demand CIBSE (kWh/yr) |
---|---|---|
Dining Hall | 2290 | 1,488,961 |
Art Block College | 1410 | 737,633 |
Graduate’s Memorial | 1004 | 757,904 |
Provost’s House | 998 | 244,911 |
Disin House | 923 | 182,179 |
Trinity College Dublin, New Square | 863 | 24,736 |
Entertainment Hall | 774 | 473,999 |
West Chapel accommodation Office | 773 | 683,524 |
Student Residential | 727 | 530,247 |
Student accommodation 1 | 718 | 920,199 |
Graduates Reading Room | 690 | 417,820 |
Electrical Engineering | 659 | 779,786 |
Trinity accommodations | 622 | 2,236,607 |
General Office 3 | 573 | 4817 |
Trinity College Dublin | 561 | 30,307 |
Student accommodation 2 | 310 | 76,7509 |
General Office 2 | 179 | 176,309 |
Chief Steward’s House | 144 | 241,915 |
Laundry | 53 | 327,109 |
Chief Steward’s House 1 | 23 | 285,996 |
Total | 14,294 | 11,312,468 |
Boilers Location | Tank Capacity (Liter) | Flow-Return Temperature (°C) | Daily Heat Loss (kJ) | Heat Loss (kWh) |
---|---|---|---|---|
Aras An Phiarsaigh | 1600 | 70–60 | 334,944 | 93 |
Samuel Beckett | 1100 | 70–60 | 230,274 | 64 |
200 Pearse St | 800 | 70–60 | 167,472 | 47 |
199 Pearse St | 1100 | 70–60 | 230,274 | 64 |
190 Pearse St | 700 | 70–60 | 146,538 | 41 |
193 Pearse St | 300 | 70–60 | 62,802 | 17 |
194 Pearse St | 700 | 70–60 | 146,538 | 41 |
Civil Engineering | 2000 | 70–60 | 418,680 | 116 |
Sports and CRANN | 12,000 | 70–60 | 2,512,080 | 698 |
O’Reilly Building | 5000 | 70–60 | 1,046,700 | 291 |
17–19 Westland Row | 1300 | 70–60 | 272,142 | 76 |
Hamilton Building | 3500 | 70–60 | 732,690 | 204 |
Biotechnology Building | 5750 | 70–60 | 1,203,705 | 334 |
East End | 12,000 | 70–60 | 2,512,080 | 698 |
Parsons Building | 3800 | 70–60 | 795,492 | 221 |
Moyne Institute | 3200 | 70–60 | 669,888 | 186 |
Lloyd Building | 6000 | 70–60 | 1,256,040 | 349 |
SNIAMS | 4000 | 70–60 | 837,360 | 233 |
Physiology and Zoology | 5000 | 70–60 | 1,046,700 | 291 |
Anatomy | 1200 | 70–60 | 251,208 | 70 |
Chemistry | 3800 | 70–60 | 795,492 | 221 |
Berkeley Library | 4250 | 70–60 | 889,695 | 247 |
Total | 124,100 | - | 16,558,794 | 4600 |
Monthly heat losses (kWh) | 138,000 | |||
Overall Annual heat losses (kWh) | 1,679,000 |
FID | Building Name | August Heat Demand kWh |
---|---|---|
1724 | Chapel | 20,409 |
1920 | GP | 21,343 |
1351 | Coffee Shop Pavilion | 22,236 |
3604 | Examination Hall | 23,833 |
3603 | Office at Front Square | 27,259 |
1986 | Graduate’s Memorial | 44,187 |
1504 | CRANN | 49,231 |
1831 | Accommodation Library Square | 49,375 |
1367 | Berkley Library | 54,605 |
1990 | Accommodation east tennis | 54,774 |
3781 | Old Library | 56,017 |
1979 | Accommodation south ARAS | 56,960 |
1718 | Provost’s House | 61,469 |
1820 | Staff accommodation | 62,851 |
1722 | Office Parliament Square | 63,159 |
1932 | Samuel Beckett Theater | 70,473 |
1373 | Berkeley Library 2 | 122,415 |
1365 | Berkeley Library 3 | 122,437 |
1500 | Sport Center | 177,854 |
2044 | Dining Hall | 186,384 |
---- | Total | 1,347,271 |
Unit | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Year |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
kWh/yr | 3945 | 3559 | 3364 | 2785 | 2398 | 1626 | 1529 | 1626 | 1723 | 2302 | 2979 | 3462 | 31,361 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaisi, S.; Mohammadi, S.; Habibi, K. Heat Mapping, a Method for Enhancing the Sustainability of the Smart District Heat Networks. Energies 2021, 14, 5462. https://doi.org/10.3390/en14175462
Vaisi S, Mohammadi S, Habibi K. Heat Mapping, a Method for Enhancing the Sustainability of the Smart District Heat Networks. Energies. 2021; 14(17):5462. https://doi.org/10.3390/en14175462
Chicago/Turabian StyleVaisi, Salah, Saleh Mohammadi, and Kyoumars Habibi. 2021. "Heat Mapping, a Method for Enhancing the Sustainability of the Smart District Heat Networks" Energies 14, no. 17: 5462. https://doi.org/10.3390/en14175462
APA StyleVaisi, S., Mohammadi, S., & Habibi, K. (2021). Heat Mapping, a Method for Enhancing the Sustainability of the Smart District Heat Networks. Energies, 14(17), 5462. https://doi.org/10.3390/en14175462