Operation Problems of Solar Panel Caused by the Surface Contamination
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Sun Simulator
2.2. The Measurements Composition
- Pollutants can spread almost evenly over the entire surface.
- It can approximate the natural deposition much better.
- It eliminates significant particle size differences.
- A more significant reduction in performance will make it challenging to supply consumers with the solar system adequately.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bodnár, I.; Iski, P.; Koós, D.; Skribanek, Á. Examination of electricity production loss of a solar panel in case of different types and concentration of dust. In Advances and Trends in Engineering Sciences and Technologies III, 1st ed.; Al Ali, M., Platko, M., Eds.; Taylor & Francis Group: London, UK, 2019; pp. 313–318. [Google Scholar] [CrossRef]
- Alonso-Montesinos, J.; Martínez, F.R.; Polo, J.; Martín-Chivelet, N.; Batlles, F.J. Economic effect of dust particles on photovoltaic plant production. Energies 2020, 13, 6376. [Google Scholar] [CrossRef]
- Ndiaye, A.; Kébe, C.M.F.; Bilal, B.O.; Charki, A.; Sambou, V.; Ndiaye, P.A. Study of the correlation between the dust density accumulated on photovoltaic module’s surface and their performance characteristics degradation. Innov. Interdiscip. Solut. Underserved Areas 2018, 204, 31–42. [Google Scholar] [CrossRef]
- Maghami, M.R.; Hizam, H.; Gomes, C.; Radiz, M.A.; Rezadad, M.I.; Hajighorbani, S. Power loss due to soiling on solar panel: A review. Renew. Sustain. Energy Rev. 2016, 59, 1307–1316. [Google Scholar] [CrossRef] [Green Version]
- Abderrezek, M.; Fathi, M. Experimental study of the dust effect on photovoltaic panels’ energy yield. Sol. Energy 2017, 142, 308–320. [Google Scholar] [CrossRef]
- Gürtürk, M.; Benli, H.; Ertürk, N.K. Effects of different parameters on energy—Exergy and power conversion efficiency of PV modules. Renew. Sustain. Energy Rev. 2018, 92, 426–439. [Google Scholar] [CrossRef]
- Said, S.A.M.; Hassan, G.; Walwil, H.M.; Al-Aqeeli, N. The effect of environmental factors and dust accumulation on photovoltaic modules and dust-accumulation mitigation strategies. Renew. Sustain. Energy Rev. 2018, 82, 743–760. [Google Scholar] [CrossRef]
- Jiang, H.; Lu, L.; Sun, K. Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules. Atmos. Environ. 2011, 45, 4299–4304. [Google Scholar] [CrossRef]
- Klugmann-Radziemska, E. Shading, dusting and incorrect positioning of photovoltaic modules as important factors in performance reduction. Energies 2020, 13, 1992. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Yue, S.; Lu, L.; Li, J. Study on dust deposition mechanics on solar mirrors in a solar power plant. Energies 2019, 12, 4550. [Google Scholar] [CrossRef] [Green Version]
- Rao, A.; Pillai, R.; Mani, R.; Ramamurthy, M. An experimental investigation into the interplay of wind, dust and temperature on photovoltaic performance in tropical conditions. In Proceedings of the 12th International Conference on Sustainable Energy Technologies, Hong Kong, China, 26–29 August 2013; pp. 2303–2310. [Google Scholar]
- Adinoyi, M.J.; Said, S.A.M. Effect of dust accumulation on the power outputs of solar photovoltaic modules. Renew. Energy 2013, 60, 633–636. [Google Scholar] [CrossRef]
- Zhang, C.; Shen, C.; Yang, Q.; Wei, S.; Lv, G.; Sun, C. An investigation on the attenuation effect of air pollution on regional solar radiation. Renew. Energy 2020, 161, 570–578. [Google Scholar] [CrossRef]
- Abass, K.I.; Al-Zubaidi, D.S.M.; Al-Waeli, A.A.K. Effect of pollution and dust on PV performance. Int. J. Civ. Mech. Energy Sci. 2017, 3, 181–185. [Google Scholar]
- Saber, H.H.; Hajiah, A.E.; Alshehri, S.A.; Hussain, H.J. Investigating the effect of dust accumulation on the solar reflectivity of coating materials for cool roof applications. Energies 2021, 14, 445. [Google Scholar] [CrossRef]
- Al Siyabi, I.; Al Mayasi, A.; Al Shukaili, A.; Khanna, S. Effect of soiling on solar photovoltaic performance under desert climatic conditions. Energies 2021, 14, 659. [Google Scholar] [CrossRef]
- Bhattacharya, T.; Chakraborty, A.K.; Pal, K. Influence of environmental dust on the operating characteristics of the solar PV module in Tripura, India. Int. J. Eng. Res. 2015, 4, 141–144. [Google Scholar] [CrossRef]
- Alghamdi, A.S.; Bahaj, A.S.; Blunden, L.S.; Wu, Y. Dust removal from solar PV modules by automated cleaning systems. Energies 2019, 12, 2923. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, R.; Kumar, R.; Jha, K.G.; Morampudi, M.; Rajput, P.; Lata, S.; Agariya, S.; Nanda, G.; Raghava, S.S. Comparison of different technologies for solar PV (Photovoltaic) outdoor performance using indoor accelerated aging tests for long term reliability. Energy 2016, 107, 550–561. [Google Scholar] [CrossRef]
- Bodnár, I. Electric parameters determination of solar panel by numeric simulations and laboratory measurements during temperature transient. Acta Polytech. Hung. 2018, 15, 59–82. [Google Scholar]
- Hussain, F.; Othman, M.Y.H.; Yatim, B.; Ruslan, H.; Sopian, K.; Anaur, Z.; Khairuddin, S. Fabrication and irradiance mapping of a low cost solar simulator for indoor testing of solar collector. J. Sol. Energy Eng. 2011, 133, 4. [Google Scholar] [CrossRef]
- Singh, P.; Ravindra, N.M. Temperature dependence of solar cell performance—An analysis. Sol. Energy Mater. Sol. Cells 2012, 101, 36–45. [Google Scholar] [CrossRef]
- Bodnár, I.; Koós, D. Determination of temperature coefficient and transient electrical characteristics of a cooled and non-cooled solar module. In Proceedings of the 2018 19th International Carpathian Control Conference (ICCC), Szilvasvarad, Hungary, 28–31 May 2018; pp. 570–573. [Google Scholar] [CrossRef]
- Kádár, P.; Varga, A. Measurement of spectral sensitivity of PV cells. In Proceedings of the 2012 IEEE 10th Jubilee International Symposium on Intelligent Systems and Informatics, Subotica, Serbia, 20–22 September 2012; pp. 549–552. [Google Scholar]
- Oh, S.; Figgis, B.W.; Rashkeev, S. Effect of thermophoresis on dust accumulation on solar panels. Sol. Energy 2020, 211, 412–417. [Google Scholar] [CrossRef]
- Ürmös, A.; Farkas, Z.; Dobos, L.; Nagy, S.; Nemecsics, Á. Contact problems in GaAs-based solar cells. Acta Polytech. Hung. 2018, 15, 99–124. [Google Scholar]
- Tang, S.; Xing, Y.; Chen, L.; Song, X.; Yao, F. Review and a novel strategy for mitigating hot spot of PV panels. Sol. Energy 2021, 214, 51–61. [Google Scholar] [CrossRef]
- Frazão, M.; Silva, J.A.; Lobato, K.; Serra, J.M. Electroluminescence of silicon solar cells using a consumer grade digital camera. Measurement 2017, 99, 7–12. [Google Scholar] [CrossRef]
- Deitsch, S.; Christlein, V.; Berger, S.; Buerhop-Lutz, C.; Maier, A.; Gallwitz, F.; Riess, C. Automatic classification of defective photovoltaic module cells in electroluminescence images. Sol. Energy 2019, 185, 455–468. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Yang, Q.; Xiong, K.; Yan, W. Deep learning based automatic defect identification of photovoltaic module using electroluminescence images. Sol. Energy 2020, 201, 453–460. [Google Scholar] [CrossRef]
- Olivares, D.; Ferrada, P.; Bijman, J.; Rodríguez, S.; Trigo-González, M.; Marzo, A.; Rabanal-Arabach, J.; Alonso-Montesinos, J.; Batlles, F.J.; Fuentealba, E. Determination of the soiling impact on photovoltaic modules at the coastal area of the Atacama desert. Energies 2020, 13, 3819. [Google Scholar] [CrossRef]
- Akram, M.W.; Li, G.; Jin, Y.; Chen, X.; Zhu, C.; Zhao, X.; Khaliq, A.; Faheem, M.; Ahmad, A. CNN based automatic detection of photovoltaic cell defects in electroluminescence images. Energy 2019, 189, 116319. [Google Scholar] [CrossRef]
- Berardone, I.; Lopez Garcia, J.; Paggi, M. Analysis of electroluminescence and infrared thermal images of monocrystalline silicon photovoltaic modules after 20 years of outdoor use in a solar vehicle. Sol. Energy 2018, 173, 478–486. [Google Scholar] [CrossRef]
Flora and Fauna | Agriculture | Industry | Traffic |
---|---|---|---|
bird excrement | soil particles | dust | rubber |
pollen | crop residues | fly ash | carbon black |
leaves | carbon black | exhaust gas | |
construction sites |
Parameter | Symbol | Value | Unit |
---|---|---|---|
Year of manufacture | - | 2008 | - |
Intensity of illumination | Eill | 861 | W/m2 |
Peak Power | Pmax | 85 | W |
Maximum power current | IM | 4.86 | A |
Maximum power voltage | UM | 17.50 | V |
Short-circuit current | ISC | 5.40 | A |
Open-circuit voltage | UOC | 21.20 | V |
Nominal fill factor | φ | 0.74 | - |
Serial resistance | Rs | 0.0035 | Ω |
Parallel resistance | RP | 10,000 | Ω |
Number of serial-connected cells | NS | 18 | piece |
Number of parallel-connected cells | NP | 2 | piece |
Percentage Temperature coefficient for Pmax | μPm | −0.460 | %/°C |
Percentage Temperature coefficient for Isc | μIsc | 0.031 | %/°C |
Percentage Temperature coefficient for Uoc | μUoc | −0.348 | %/°C |
Efficiency (maximal power) | η | 12.75 | % |
Nominal operating temperature | TN | 25 | °C |
Pollutant | Density [g/cm3] | Specific Surface Area [mm2/g] | Specific Heat Capacity [kJ/kgK] | Thermal Conductivity [W/mK] | Thermal Conductivity Factor [10−6 m2/s] |
---|---|---|---|---|---|
Soil | 1.50 | ~0.35 | 0.88 | 0.27 | 0.20 |
Sand | 1.60 | ~0.30 | 0.80 | 1.28 | 1.00 |
Fly ash | 0.60 | ~0.66 | 1.20 | 0.12 | 0.14 |
Tool 1 | Tool 2 | Tool 3 | |
---|---|---|---|
Type of tool | sieve | sieve | spoon |
Hole diameter | 0.5 mm | 0.9 mm | - |
The particle size of soil, sand, and fly ash | <0.5 mm | 0.5–0.9 mm | soil: 1–6 mm sand: 0.3–3 mm fly ash: 0.1–1.4 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matusz-Kalász, D.; Bodnár, I. Operation Problems of Solar Panel Caused by the Surface Contamination. Energies 2021, 14, 5461. https://doi.org/10.3390/en14175461
Matusz-Kalász D, Bodnár I. Operation Problems of Solar Panel Caused by the Surface Contamination. Energies. 2021; 14(17):5461. https://doi.org/10.3390/en14175461
Chicago/Turabian StyleMatusz-Kalász, Dávid, and István Bodnár. 2021. "Operation Problems of Solar Panel Caused by the Surface Contamination" Energies 14, no. 17: 5461. https://doi.org/10.3390/en14175461
APA StyleMatusz-Kalász, D., & Bodnár, I. (2021). Operation Problems of Solar Panel Caused by the Surface Contamination. Energies, 14(17), 5461. https://doi.org/10.3390/en14175461