Development of Solid Biomass Production in Poland, Especially Pellet, in the Context of the World’s and the European Union’s Climate and Energy Policies
Abstract
:1. Introduction
- What is the renewable energy mix in Poland, the EU, and the world?
- What is the state of law concerning the renewable energy sources?
- What is the prognosis of pellet production in Poland and the world?
2. Climate and Energy Policy
2.1. United Nations Framework Convention on Climate Change (UNFCCC)
2.2. The Kyoto Protocol
2.3. Post-Kyoto System of International Relations
2.4. Paris Agreement
3. Materials and Methods
3.1. Data Sources
3.2. Methods
4. Results
4.1. Pellet Production in the World
4.2. Gross Energy Availability from Solid Biofuels in the EU
4.3. Gross Energy Availability from Solid Biofuels in Poland
4.4. Descriptive Statistics of Wood Pellet Production in the World and EU
4.5. Stationarity of Solid Biomass and Pellet Production in the World and Poland
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scarlat, N.; Dallemand, J.-F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Brodziński, Z.; Brodzińska, K.; Szadziun, M. Photovoltaic Farms—Economic Efficiency of Investments in North-East Poland. Energies 2021, 14, 2087. [Google Scholar] [CrossRef]
- Ren21 Renewables. Report Global Status Report; REN21: Paris, France, 2019; p. 336. Available online: https:/www.ren21.net/report/global-status-report/URL (accessed on 11 June 2021).
- Eurostat. Energy. Share of Energy from Renewable Sources (nrg_ind_ren). Available online: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_ind_ren&lang=en (accessed on 11 June 2021).
- Stolarski, M.; Warmiński, M.; Krzyżaniak, M.; Olba-Zięty, E.; Akincza, M. Bioenergy technologies and biomass potential vary in Northern European countries. Renew. Sustain. Energy Rev. 2020, 133, 110238. [Google Scholar] [CrossRef]
- Grzybek, A.; Gradziuk, P.; Kowalczyk, K. Słoma Energetyczne Paliwo; Wydawnictwo Wieś Jutra Sp. z o.o.: Warszawa, Poland, 2001; p. 15. (In Polish) [Google Scholar]
- Lewandowski, W.M. Proekologiczne Odnawialne Źródła Energii; Wydawnictwo WNT: Warszawa, Poland, 2012; Volume 322. (In Polish) [Google Scholar]
- Roszkowski, A. Bioenergia—Pola i lasy zastapia węgiel, ropę i gaz? Inżynieria Rolnicza 2009, 13, 243–257. (In Polish) [Google Scholar]
- Chochowski, A.; Krawiec, F. Zarządzanie w Energetyce. Koncepcje, Zasoby, Strategie, Struktury, Procesy i Technologie Energetyki Odnawialnej; Wydawnictwo Difin: Warszawa, Poland, 2008; pp. 80–83. (In Polish) [Google Scholar]
- Abbasi, T.; Abbasi, S.A. Biomass energy and the environmental impacts associated with its production and utilization. Renew. Sustain. Energy Rev. 2010, 14, 919–937. [Google Scholar] [CrossRef]
- Roszkowski, A. Energia z biomasy—Efektywność, sprawność i przydatność energetyczna. Problemy Inżynierii Rolniczej 2013, 1, 98. [Google Scholar]
- Zbytek, Z.; Adamczyk, F. Możliwości wykorzystania biomasy stałej. Część 2. Sposoby określania potencjału biomasy stałej i doboru maszyn do jej zbioru. Technika Rolnicza Ogrodnicza Leśna 2017, 3, 6–9. [Google Scholar]
- Szempliński, W.; Dubis, B.; Lachutta, K.M.; Jankowski, K.J. Energy Optimization in Different Production Technologies of Winter Triticale Grain. Energies 2021, 14, 1003. [Google Scholar] [CrossRef]
- Pawlak, J. Efficiency of energy inputs in polish agriculture. Rocz. Nauk Roln. 2012, 1, 121–128. (In Polish) [Google Scholar]
- Sokólski, M.; Jankowski, K.J.; Załuski, D.; Szatkowski, A. Productivity, Energy and Economic Balance in the Production of Different Cultivars of Winter Oilseed Rape. A Case Study in North-Eastern Poland. Agronomy 2020, 10, 508. [Google Scholar] [CrossRef] [Green Version]
- Budzyński, W.S.; Jankowski, K.J.; Jarocki, M. An analysis of the energy efficiency of winter rapeseed biomass under different farming technologies. A case study of a large-scale farm in Poland. Energy 2015, 90, 1272–1279. [Google Scholar] [CrossRef]
- Davis, S.C.; Anderson-Teixeira, K.J.; DeLucia, E.H. Life-cycle analysis and the ecology of biofuels. Trends Plant Sci. 2009, 14, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Ajanovic, A. Biofuels versus food production: Does biofuels production increase food prices? Energy 2010, 36, 2070–2076. [Google Scholar] [CrossRef]
- Demirbas, A. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers. Manag. 2008, 49, 2106–2116. [Google Scholar] [CrossRef]
- Marks-Bielska, R.; Bielski, S.; Novikova, A.; Romaneckas, K. Straw stocks as a source of renewable energy. A case study of a district in Poland. Sustainability 2019, 11, 4714. [Google Scholar] [CrossRef] [Green Version]
- Bielski, S.; Marks-Bielska, R.; Zielińska-Chmielewska, A.; Romaneckas, K.; Šarauskis, E. Importance of Agriculture in Creating Energy Security—A Case Study of Poland. Energies 2021, 14, 2465. [Google Scholar] [CrossRef]
- Keles, S.; Kar, T.; Bahadir, A.; Kaygusuz, K. Renewable energy from woody biomass in Turkey. J. Eng. Res. Appl. Sci. 2017, 6, 652–661. [Google Scholar]
- Wyszomierski, R.; Bórawski, P.; Jankowski, K. Pozycja Polski w produkcji biomasy na tle innych krajów Unii Europejskiej. Roczniki Naukowe SERiA 2018, 20, 177–183. (In Polish) [Google Scholar]
- Gostomczyk, W. Konkurencyjność odnawialnych źródeł energii. Roczniki Naukowe SERiA 2014, 16, 55–61. (In Polish) [Google Scholar]
- Bartosiewicz-Burczy, H. Ekonomika wykorzystania energii źródeł odnawialnych do produkcji energii elektrycznej. Energetyka 2002, 7, 458–463. (In Polish) [Google Scholar]
- Rokicki, T.; Perkowska, A.; Klepacki, B.; Bórawski, P.; Bełdycka-Bórawska, A.; Michalski, K. Changes in energy consumption in Agriculture in the EU countries. Energies 2021, 14, 1570. [Google Scholar] [CrossRef]
- Faaij, A. Modern biomass conversion technologies. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 343–375. [Google Scholar] [CrossRef] [Green Version]
- Flizikowski, J.; Mroziński, A. Inżynieria Aglomeracji Biomasy; Graftpol Agnieszka Blicharz-Krupińska: Wrocław, Poland, 2016; (In Polish). Available online: https://studiaoze.utp.edu.pl/pliki/publikacje/Projekt%20Norweski%20-%20Aglomeracja%20Biomasy.pdf (accessed on 11 June 2021).
- McCormick, K.; Kautto, N. The bioeconomy in Europe: An Overview. Sustainability 2013, 5, 2589. [Google Scholar] [CrossRef] [Green Version]
- Butorina, O.V. European Union after the crisis: Decline or rebirth?, Vestn. MGIMO Univ., No. 4, 71–81 (2013). Available online: http//:eng.globalaffairs.ru/articles/a-europe-without-the-european-union/ (accessed on 11 June 2021).
- Gusev, A.A. Modern environmental policy. M IMEMO RAN 2006, 205, 4. [Google Scholar]
- Ford, J.; Maillet, M.; Pouliot, V.; Meredith, T.; Cavanaugh, A.; Team, I.R. Adoption and indigenous peoples in the United Nations Framework Convention on climate change. Clim. Chang. 2016, 139, 429–443. [Google Scholar] [CrossRef]
- Bakhtiari, F. International cooperative initiatives and teh United nations Framework Convention on Climate Change. Clim. Policy 2018, 18, 655–663. [Google Scholar] [CrossRef] [Green Version]
- Tompkins, E.L.; Amundsen, H. Perceptions of the effectiveness of the United Nations Framework Convention on Climate Change in advancing national actions an climate change. Environ. Sci. Policy 2008, 11, 1–13. [Google Scholar] [CrossRef]
- Gibb, C.; Ford, J. Should the United Nations Framework Conventuion on Climate Change recognize climate migrants? Environ. Res. Lett. 2012, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Aichele, R.; Felbermayr, G. Kyoto and the carbon footprint of nations. J. Environ. Econ. Manag. 2012, 63, 336–354. [Google Scholar] [CrossRef] [Green Version]
- Baumert, K.A.; Herzog, T.; Pershing, J. Navigating the Numbers Greenhouse Gas Data and International Climate Policy; World Resource Institute: Washington, DC, USA, 2005; Available online: http://pdf.wri.org/navigating_numbers.pdf (accessed on 11 June 2021).
- Bielski, S. Conditions of biomass production for energy generation purposes in Poland. Folia Oecon. Stetin. 2011, 10, 238–249. [Google Scholar] [CrossRef] [Green Version]
- Faure, M.; Gupta, J.; Nentjes, A. Climate Change and the Kyoto Protocol The Role of Institutions and Instruments to Control Global Change; Edward Elgar Publishing: Cheltenham, UK, 2003; Available online: https://www.e-elgar.com/shop/gbp/climate-change-and-the-kyoto-protocol-9781843762454.html (accessed on 11 June 2021).
- The Problem of Climate Change: The Results of 2007 and Further Perspectives [Electronic Resource]. Available online: http://global-climate-change.ru/ (accessed on 11 June 2021).
- Hutchins, D.A.; Jansson, J.K.; Remairs, J.V.; Rich, V. Climate change microbiology—Problems and perspectives. Nat. Rev. Microbiol. 2019, 17, 391. [Google Scholar] [CrossRef] [PubMed]
- Climate Negotiations in Bonn: One More Step on the Way to Copenhagen [Electronic Resource]. Available online: http://global-climate-change.ru/ (accessed on 11 June 2021).
- Costa, A.; Sanchez, P.; Macron, E.; Canete, M. Lisbon Declaration, Lisbon. Available online: Thhps://ec/Europa.Eu/info/sites/info/files/Lisbon_declaration_energyinterconnections_final.pdf (accessed on 25 March 2021).
- Energy Sector Strategy 2019–2023 as Approved by Board of Directors at Their Meeting of 12 December 2018; European Bank for Reconstruction and Development: Strasburg, France, 2018; Available online: Downloads/energy-sector-strategy%20(1).pdf (accessed on 11 June 2021).
- Wyszomierski, R.; Bórawski, P.; Dunn, J.W. Development of Renewable Energy Source in Poland on the background of the European Union. Probl. Econ. Law 2019, 3, 12. [Google Scholar]
- Ouyang, T.; Huang, H.; He, Y.; Zang, Z. Chaotic wind power time series prediction via switching data-driven models. Renew. Energy 2020, 145, 270–281. [Google Scholar] [CrossRef]
- Lajdová, Z.; Bielik, P. Vertical price transmission analysis: The case of milk in the Slovak dairy sector. Appl. Stud. Agribus. Commer. APSTRACT 2013, 7, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Engle, R.F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 1982, 50, 987–1006. [Google Scholar] [CrossRef]
- Bellerslev, T. Generalized autoregressive conditional heteroskedasticity. J. Econom. 1986, 31, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Hillebrand, E. Neglecting parameter changes in GARCH models. J. Econom. 2005, 129, 121–138. [Google Scholar] [CrossRef]
- Daryanto, A.; Sahara, D.A.S.; Singa, A.R. Climate change and milk price volatility in Indonesia. Int. J. Econ. Financ. Issues 2020, 10, 282–288. [Google Scholar] [CrossRef]
- Hossain, A. Forecasting volatility of processed milk products in the framework of ARCH model. Int. J. Mod. Sci. Technol. 2018, 3, 190–195. [Google Scholar]
- Efimowa, O.; Serletis, A. Energy markets volatility modelling using GARCH. Energy Econ. 2014, 43, 264–273. [Google Scholar] [CrossRef]
- Wu, J. Threshold GARCH Model: Theory and Application; The University of Western Ontario: London, ON, Canada, 2010; Available online: https://publish.uwo.ca/~jwu87/files/JobMarketPaper_JingWu.pdf (accessed on 11 June 2021).
- Global Bioenergy Statistics. 2020. Available online: https://www.greengrowthknowledge.org/research/global-bioenergy-statistics-2020 (accessed on 11 June 2021).
- Nawrot, Ł.; Bednarska, M.; Zmyślony, P. Odnawialne źródła energii w gospodarce turystycznej jako obszar badań naukowych. Warsztaty z Geografii Turyzmu 2014, 87. (In Polish) [Google Scholar] [CrossRef]
- Rokicki, T. Sustainable Development in Energy Sector in the European Union Countries. Econ. Sci. Rural Dev. 2016, 43, 108–115. [Google Scholar]
- Gołasa, P. Agricultural Biogass Production and the Development of Prosumer Energy in Poland. Econ. Sci. Rural Dev. 2015, 37, 134–141. [Google Scholar]
- Islam, M.A.; Hasanuzzaman, M.; Rahim, N.A.; Nahar, A.; Hosenuzzaman, M. Global renewable energy-based electricity generations and smart grid system for energy security. Sci. World J. 2014, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Pazheri, F.R.; Othman, M.F.; Malik, N.H. A review on global renewable electricity scenario. Renew. Sustain. Energy Rew. 2014, 31, 835–845. [Google Scholar] [CrossRef]
- Xu, X.; Wei, Z.; Ji, Q.; Wang Ch Gao, G. Global renewable energy development: Influencing factors, trend predictions and countermeasures. Resour. Policy 2019, 63, 101470. [Google Scholar] [CrossRef]
- Ellaabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Demibras, A. Global renewable energy projections. Energy Resour. Part B 2009, 4, 212–224. [Google Scholar] [CrossRef]
- Faaij, A.P.C. Bio-energy in Europe: Changing technology choices. Energy Policy 2006, 34, 322–342. [Google Scholar] [CrossRef] [Green Version]
- Sala, K. Przemysłowe wykorzystanie biomasy w Polsce. Przesłanki i bariery. Prace Komisji Geografii Przemysłu Polskiego Towarzystwa Geograficznego 2017, 31, 150. (In Polish) [Google Scholar] [CrossRef]
- Zakrzewska, B.; Rojek, K.; Rola, O.Z.E. w europejskim systemie energetycznym. Logistyka 2019. (In Polish) [Google Scholar] [CrossRef]
- GUS. Energia 2019; GUS: Warszawa, Poland, 2019. (In Polish) [Google Scholar]
- Jasiulewicz, M. Znaczenie Rolnictwa w Rozwoju Energetyki Rozproszonej Jako Formy Rozwoju Zrównoważonego Obszarów Wiejskich; Instytut Ekonomii i Zarządzania, Politechnika Koszalińska: Koszalin, Poland, 2009; Volume 157. (In Polish) [Google Scholar]
- Ociepa-Kubicka, A. Wykorzystanie Biomasy w Przedsiębiorstwach Energetycznych. In Proceedings of the ECOpole, Opole, Poland, 15–17 October 2014; p. 279. (In Polish) [Google Scholar] [CrossRef]
- Gostomczyk, W. Wykorzystywanie Biomasy Energetycznej do Kreowania Rynku Pracy; Politechnika Koszalińska: Koszalin, Poland, 2015; pp. 162–163. (In Polish) [Google Scholar]
- Czeczko, R. Biomasa Rolnicza w Energetyce. Autobusy Tech. Eksploat. Syst. Transp. 2012, 13, 102–104. (In Polish) [Google Scholar]
- Wicki, L. Changes in land use for production of energy crops in Poland. Roczniki naukowe Ekonomii Rolnictwa i Rozwoju Obszarów Wiejskich 2017, 104, 37–47. [Google Scholar] [CrossRef]
- Stolarski, M.; Niksa, D.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, S. Willow productivity from small- and large-scale experimental plantations in Poland from 2000 to 2017. Renew. Sustain. Energy Rev. 2019, 101, 461–475. [Google Scholar] [CrossRef]
- Gostomczyk, W. Udział Biomasy Energetycznej w Realizacji Idei Zrównoważonego Rozwoju; Politechnika Koszalińska: Koszalin, Poland, 2013; pp. 396–397. Available online: https://journals.pan.pl/Content/97228/mainfile.pdf?handler=pdf (accessed on 11 June 2021). (In Polish)
- Ile Energii w Polsce Wytwarzamy z OZE? Available online: https://www.green-projects.pl/energia-oze-wytwarzanie-polska-statystyki/ (accessed on 11 June 2021). (In Polish).
- Bartoszewicz-Buczy, A. Potencjał i Energetyczne Wykorzystanie Biomasy w Krajach Europy Środkowej; Instytut Energetyki, JEN: Warszawa, Poland, 2012; p. 860. (In Polish) [Google Scholar]
- GUS. Energia ze źródeł Odnawialnych; GUS: Warszawa, Poland, 2018. (In Polish) [Google Scholar]
- Jasiulewicz, M. Produkcja energii z Agro biomasy w Polsce na tle wybranych krajów Unii Europejskiej. Roczniki Naukowe SERiA 2015, 18, 94. (In Polish) [Google Scholar]
- Gostomczyk, W. Pozycja Polski na europejskim rynku biomasy energetycznej. Roczniki Naukowe Stowarzyszenia Ekonomistów Rolnictwa i Agrobiznesu 2011, 13, 122–125. (In Polish) [Google Scholar]
- Kurowska, K.; Kryszak, H.; Bielski, S. Determinants of biomass production for energy purposes in northeastern Poland. Eng. Rural Dev. 2014, 13, 29–30. [Google Scholar]
- Księżopolski, K.; Drygas, M.; Promińska, K.; Nurzyńska, I. The Ecconomic Effects of the New Patterns of Energy Efficiency and Heat Sources in Rural Single-Family Houses in Poland. Energies 2020, 13, 6358. [Google Scholar] [CrossRef]
- Janik, W.; Kaproń, H.; Paździor, A. Uwarunkowania rozwoju produkcji energii elektrycznej na bazie źródeł odnawialnych. Rynek Energii 2018, 2, 22–27. (In Polish) [Google Scholar]
- Wyszomierski, R.; Bełdycka-Bórawska, A.; Bórawski, P.; Jankowski, K. Ocena opłacalności wykorzystania biomasy na cele energetyczne ze szczególnym uwzględnieniem peletu. Roczniki Naukowe Stowarzyszenia Ekonomistów Rolnictwa i Agrobiznesu 2017, 18, 296–302. (In Polish) [Google Scholar]
- Hall, P. Sustainable production of forest biomass for energy. For. Chron. 2002, 78, 391–396. [Google Scholar] [CrossRef] [Green Version]
- Ryttel, R.; Ingerslev, M.; Kilpeläinen, A.; Torssonen, P.; Lazdina, D.; LöF, M.; Madsen, P.; Muiste, P.; Stener, L.-G. Increased forest biomass production in the Nordic and Baltic countries—A review on current and future opportunities. Silva Fenn. 2016, 50, 1–33. [Google Scholar] [CrossRef]
- Krawiec, F. (Ed.) Odnawialne Źródła Energii w Świetle Globalnego Kryzysu Energetycznego; Difin: Warsaw, Poland, 2010. (In Polish) [Google Scholar]
- Koryś, K.A.; Latawiec, A.E.; Grotkiewicz, K.; Kuboń, M. The review of biomass potential for agricultural biogas production in Poland. Sustainability 2019, 11, 6515. [Google Scholar] [CrossRef] [Green Version]
- Climate and Energy Policies in Poland. 2017. Available online: http://www.europarl.eutopa.eu/RegData/etudes?BRIE/2017/607335?IPOL_BRI(2017)607335_EN.pdf (accessed on 5 May 2021).
- World Energy Council. Available online: https://www.worldenergy.org/data/resources/country/poland/coal/ (accessed on 5 May 2021).
- Teresienė, D.; Dubauskas, G. Modelling stock price of Lithuanian manufacture of milk and dairy products companies’ volatility with GARCH models. Manag. Theory Stud. Rural Dev. 2008, 13, 154–161. [Google Scholar]
- Bai, J.; Ng, S. Tests for Skewness, Kurtosis, and Normality for Time Series Data. J. Bus. Econ. Stat. 2005, 23. [Google Scholar] [CrossRef] [Green Version]
- Dickey, A.F.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar]
- Sobczyk, M. Statystyka; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2005. [Google Scholar]
- Wood Pellets Market Brief; United States Department of Agriculture, Foreign Agricultural Service: Washington, DC, USA, 2020. Available online: https://www.fas.usda.gov/data/poland-wood-pellets-market-brief (accessed on 11 June 2021).
- Jezierska-Thöle, A.; Rudnicki, R.; Kluba, M. Development of energy crops cultivation for biomass production in Poland. Renew. Sustain. Energy Rev. 2016, 62, 534–545. [Google Scholar] [CrossRef]
- Igliński, B.; Iglińska, A.; Kujawski, W.; Buczkowski, R.; Cichosz, M. Bioenergy in Poland. Renew. Sustain. Energy Rev. 2011, 15, 2999–3007. [Google Scholar] [CrossRef]
- Kitzing, L.; Mitchell, C.; Morthorst, P.E. Renewable energy policies in Europe: Converging or diverging? Energy Policy 2012, 21, 192–201. [Google Scholar] [CrossRef] [Green Version]
- De Jager, D.; Klessmann, C.; Stricker, E.; Winkel, T.; de Visser, E.; Koper, M.; Ragwitz, M.; Held, A.; Resch, G.; Busch, S.; et al. Financing Renewable Energy in the European Energy Market. In By Order of the European Commission, DG Energy; Ecofys: Utrecht, The Netherlands, 2011; TREN/D1/518-2008. [Google Scholar]
- Scarlat, N.; Dallemand, J.-F.; Monforti-Ferrarion, F.; Nita, V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environ. Dev. 2015, 15, 3–34. [Google Scholar] [CrossRef]
- IEEP. 2014. Available online: http://www.ieep.eu/assets/963/KNOSSOS_Green_Economy_Supporting_Briefing.pdf (accessed on 11 June 2021).
- Ghaffariyan, M.R. Review of European biomass harvesting technologies. Silva Balc. 2010, 11, 5–20. [Google Scholar]
- Bentsen, N.S.; Felby, C. Biomass for bioenergy in the European Union—A review of bioenergy resources assessments. Bentsen Biotechnol. Biofuels 2012, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Van Dam., J.; Faaij, A.P.C.; Lewandowski, I.; Fischer, G. Biomass production potentials in Central and Eastern Europe under different scenarios. Biomass Bioenergy 2007, 31, 345–366. [Google Scholar] [CrossRef] [Green Version]
- Long, H.; Li, X.; Wang, H.; Jia, J. Biomass resources and their bioenergy potential estimation: A review. Renew. Sustain. Energy Rev. 2013, 26, 344–352. [Google Scholar] [CrossRef]
- Olkuski, T.; Stala-Szlugaj, K. Międzynarodowy rynek pelletów drzewnych. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk 2018, 105, 75–84. (In Polish) [Google Scholar] [CrossRef]
- Baum, R.; Wajszczuk, K.; Pepliński, B.; Wawrzynowicz, J. Potential for agricultural biomass production for energy purposes in Poland: A review. Contemp. Econ. 2013, 7, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Ban Ki-moon Considers the Conference in Copenhagen “A Step Forward” [Electronic Resource]. Available online: http://unepcom.ru (accessed on 11 June 2021).
- Peng, L.; Zhang, Y.; Li, F.; Wang, Q.; Chen, X.; Yu, A. Policy implication of nuclear energy’s potential for energy optimization and CO2 mitigation: A case study of Fujian, China. Nucl. Eng. Technol. 2019, 51, 1154–1162. [Google Scholar] [CrossRef]
- EC. In-Depth Report on the Results of the 2030 Climate Target Plan Open Public Consultation. 2020. Available online: https://ec.europa.eu/clima/sites/default/files/eu-climate-action/docs/2030_ctp_opc_report_en.pdf (accessed on 11 June 2021).
- Meinshausen, M.; Jeffery, L.; Guetschow, J.; Du Pont, Y.R.; Rogelj, J.; Schaeffer, M.; Höhne, N.; Elzen, M.D.; Oberthür, S.; Meinshausen, N. National post-2020 greenhouse gas targets and diversity-aware leadership. Nat. Clim. Chang. 2015, 5, 1098–1106. [Google Scholar] [CrossRef]
- Kulovesi, K.; Oberthür, S. Assessing the EU’s 2030 climate and energy policy framework: Incremental change toward radical transformation. RECIEL 2020, 29, 151–166. [Google Scholar] [CrossRef]
- Mikołajczak, E. The conditions of pellet production development in Poland. J. Agrib. Rur. Dev. 2010, 2, 93–100. [Google Scholar]
- Stolarski, M.J.; Szczukowski, S.; Tworkowski, J.; Krzyżaniak, M.; Gulczynski, P.; Mleczek, M. Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass. Renew. Energy 2013, 57, 20–26. [Google Scholar] [CrossRef]
- AEBIOM. Statistical Report 2017. European Bioenergy Outlook. 2017. Available online: http://www.aebiom.org/wp-content/uploads/2017/10/KF17-v2.pdf (accessed on 22 May 2021).
- Nagy, D.; Balogh, P.; Gabnai, Z.; Popp, J.; Oláh, J.; Bai, A. Economic Analysis of Pellet Production in Co-Digestion Biogas Plants. Energies 2018, 11, 1135. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Ng, S. Tests for Skewness, Kurtosis, and Normality for Time Series Data; Boston College Working Papers in Economics No. 501; Boston College Department of Economics: Chestnut Hill, MA, USA, 2001. [Google Scholar]
- Park, H.M. Univariate Analysis and Normality Test Using SAS, STATA, and SPSS. Available online: http://cef-cfr.ca/uploads/Reference/sasNORMALITY.pdf (accessed on 12 February 2021).
- Fiszeder, P. Modele Klasy GARCH w Empirycznych Badaniach Finansowych; Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika w Toruniu: Toruń, Poland, 2009; Available online: http://www.home.umk.pl/~piter/Modele_klasy_Garch.pdf (accessed on 11 June 2021).
- Ghahramani, M.; Thavanewaran, A. A note on GARCH model identifying. Comput. Math. 2008, 55, 2469–2475. [Google Scholar]
- Kumar, D.; Maheswaran, S. Modelling asymmetry and persistence under the impact of sudden changes in the volatility of Indian stock market. IIMB Manag. Rev. 2012, 24, 123–136. [Google Scholar] [CrossRef] [Green Version]
Years | Total | Municipal Waste | Industrial Waste | Solid Biomass | Biogases | Liquid Biofuels |
---|---|---|---|---|---|---|
2005 | 45.60 | 0.96 | 0.45 | 42.80 | 0.51 | 0.87 |
2010 | 50.50 | 1.18 | 0.77 | 45.10 | 0.85 | 2.53 |
2015 | 53.20 | 1.38 | 0.90 | 46.20 | 1.29 | 3.45 |
2016 | 54.30 | 1.42 | 1.04 | 46.90 | 1.30 | 3.58 |
2017 | 54.90 | 1.44 | 1.07 | 47.30 | 1.33 | 3.72 |
2018 | 55.60 | 1.45 | 1.13 | 47.60 | 1.36 | 3.98 |
Change 2005–2018 (%) | 21.90 | 51.00 | 151.00 | 11.20 | 166.70 | 355.20 |
Year | Total Gross Heat Production (ktoe) | Gross Electricity Production—CHP Plants (GWh) | Primary Energy Production (ktoe) | Gross Inland Consumption (ktoe) |
---|---|---|---|---|
2005 | 2844 | 29,891 | 67,757 | 68,715 |
2006 | 2882 | 33,837 | 69,423 | 70,950 |
2007 | 3089 | 34,642 | 72,889 | 74,202 |
2008 | 3373 | 37,373 | 76,795 | 78,127 |
2009 | 3535 | 41,275 | 79,507 | 81,460 |
2010 | 4786 | 46,932 | 86,238 | 89,016 |
2011 | 4585 | 49,146 | 82,271 | 84,851 |
2012 | 5432 | 53,202 | 88,845 | 91,188 |
2013 | 5794 | 49,878 | 90,616 | 93,761 |
2014 | 5723 | 51,225 | 87,341 | 91,211 |
2015 | 5803 | 50,557 | 91,881 | 95,586 |
2016 | 6276 | 54,269 | 93,662 | 98,183 |
2017 | 6603 | 56,688 | 64,691 | 99,592 |
2018 | 6771 | 55,708 | 95,284 | 100,371 |
2019 | 7144 | 59,976 | 96,896 | 102,596 |
Changes 2005–2019 (%) | 151.2 | 100.6 | 43.0 | 49.3 |
Specification | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | |||||||||||||||
Solid biofuels | 91.6 | 90.8 | 91.1 | 87.4 | 85.7 | 85.0 | 85.2 | 82.4 | 79.8 | 76.1 | 74.2 | 70.6 | 67.8 | 68.1 | 65.5 |
Solar energy | 0.0 | 0.0 | 0.0 | 0.02 | 0.1 | 0.1 | 0.2 | 0.2 | 0.3 | 0.4 | 0.5 | 0.7 | 0.7 | 0.9 | 1.4 |
Water energy | 4.2 | 3.7 | 3.4 | 3.4 | 3.3 | 3.6 | 2.7 | 2.1 | 2.4 | 2.3 | 1.7 | 2.0 | 2.4 | 1.9 | 1.7 |
Wind energy | 0.3 | 0.5 | 0.9 | 1.1 | 1.5 | 2.0 | 3.7 | 4.8 | 6.0 | 8.1 | 10.5 | 11.9 | 14.0 | 12.2 | 13.7 |
Biogas | 1.2 | 1.3 | 1.3 | 1.7 | 1.6 | 1.6 | 1.8 | 2.0 | 2.1 | 2.5 | 2.5 | 2.8 | 3.0 | 3.2 | 3.1 |
Liquid biofuels | 2.6 | 3.5 | 2.3 | 5.4 | 7.0 | 6.6 | 5.8 | 8.0 | 8.1 | 9.1 | 9.1 | 10.1 | 10.0 | 10.0 | 10.3 |
Geothermal energy | 0.2 | 0.3 | 0.2 | 0.23 | 0.24 | 0.2 | 0.2 | 0.17 | 0.22 | 0.25 | 0.24 | 0.24 | 0.25 | 0.3 | 0.2 |
Municipal waste | 0.0 | 0.0 | 0.0 | 0.00 | 0.01 | 0.04 | 0.4 | 0.4 | 0.39 | 0.45 | 0.45 | 0.85 | 1.01 | 1.1 | 1.0 |
Heat pumps | - | - | - | 0.27 | 0.30 | 0.31 | 0.30 | 0.31 | 0.44 | 0.55 | 0.55 | 0.58 | 0.62 | 2.4 | 2.6 |
Year | Total Gross Heat Production (ktoe) | Gross Electricity Production—CHP Plants (GWh) | Primary Energy Production (ktoe) | Gross Inland Consumption (ktoe) |
---|---|---|---|---|
2005 | 60 | 1375 | 4166 | 4166 |
2006 | 63 | 1822 | 4326 | 4324 |
2007 | 89 | 2253 | 4417 | 4395 |
2008 | 118 | 3214 | 4739 | 4751 |
2009 | 233 | 4691 | 5190 | 5190 |
2010 | 252 | 5663 | 5866 | 5866 |
2011 | 318 | 6862 | 6351 | 6351 |
2012 | 450 | 8552 | 6988 | 6988 |
2013 | 373 | 5718 | 6837 | 6837 |
2014 | 334 | 7269 | 6180 | 6755 |
2015 | 297 | 7069 | 6597 | 6884 |
2016 | 319 | 6913 | 6415 | 6620 |
2017 | 279 | 3893 | 6211 | 6341 |
2018 | 320.1 | 3833 | 6146.9 | 6347.2 |
2019 | 377 | 4662.8 | 6208.4 | 6596 |
Changes 2005–2019 (%) | 628.3 | 339.1 | 149.0 | 158.3 |
Statistics | Value |
---|---|
Average | 18.59 |
Median | 14.50 |
Minimal | 1.70 |
Maximal | 55.70 |
Standard deviation | 16.56 |
Coefficient of variation | 89.06 |
Skewedness | 0.88 |
Kurtosis | −0.32 |
Country | Median | Minimum | Maximum | Std. Dev. | Coefficient of Variation | Skewed-Ness | Kurtosis |
---|---|---|---|---|---|---|---|
15.29 | 9.63 | 19.73 | 3.30 | 21.89 | −0.26 | −1.27 | |
European Union 28 countries | 14.03 | 8.56 | 18.88 | 3.35 | 24.06 | −0.18 | −1.27 |
Belgium | 6.68 | 1.89 | 9.92 | 2.76 | 44.76 | −0.25 | −1.39 |
Bulgaria | 14.99 | 9.09 | 21.56 | 4.49 | 30.24 | −0.08 | −1.51 |
Czechia | 11.88 | 6.77 | 16.24 | 3.41 | 29.11 | −0.18 | −1.55 |
Denmark | 24.43 | 14.84 | 37.20 | 7.53 | 30.06 | 0.18 | −1.35 |
Germany | 12.99 | 6.20 | 17.35 | 3.34 | 26.97 | −0.34 | −0.92 |
Estonia | 25.33 | 15.97 | 31.89 | 5.13 | 21.29 | −0.27 | −1.24 |
Ireland | 6.79 | 2.38 | 11.98 | 3.08 | 45.67 | 0.10 | −1.22 |
Greece | 12.45 | 7.16 | 19.68 | 4.35 | 34.91 | 0.13 | −1.48 |
Spain | 14.07 | 8.34 | 18.36 | 3.49 | 25.48 | −0.30 | −1.31 |
France | 12.97 | 9.34 | 17.21 | 2.63 | 20.34 | 0.05 | −1.32 |
Croatia | 26.07 | 21.99 | 28.97 | 2.49 | 9.71 | −0.20 | −1.53 |
Italy | 14.23 | 6.32 | 18.27 | 4.10 | 29.78 | −0.49 | −1.15 |
Cyprus | 6.69 | 3.07 | 13.90 | 3.51 | 46.96 | 0.43 | −0.81 |
Latvia | 35.01 | 29.62 | 40.98 | 3.77 | 10.78 | 0.00 | −1.33 |
Lithuania | 20.69 | 16.48 | 26.04 | 3.61 | 17.00 | 0.04 | −1.54 |
Luxembourg | 3.02 | 0.89 | 8.97 | 2.19 | 56.98 | 0.82 | 0.01 |
Hungary | 12.67 | 4.36 | 16.20 | 3.50 | 29.78 | −0.71. | −0.69 |
Malta | 2.35 | 0.10 | 8.49 | 3.10 | 98.99 | 0.47 | −1.28 |
Netherlands | 4.59 | 2.03 | 8.77 | 1.81 | 38.21 | 0.55 | −0.18 |
Austria | 32.10 | 22.55 | 33.81 | 3.58 | 11.70 | −1.08 | −0.11 |
Poland | 10.66 | 6.89 | 12.16 | 2.06 | 21.21 | −0.39 | −1.54 |
Portugal | 24.59 | 19.21 | 30.87 | 4.21 | 16.42 | −0.02 | −1.39 |
Romania | 22.83 | 16.81 | 25.03 | 2.98 | 13.64 | −0.63 | −1.13 |
Slovenia | 21.22 | 18.40 | 23.16 | 1.53 | 7.33 | −0.41 | −0.95 |
Slovakia | 10.24 | 6.36 | 16.89 | 2.81 | 27.88 | 0.60 | 0.26 |
Finland | 33.50 | 28.81 | 43.08 | 4.88 | 13.99 | 0.25 | −1.44 |
Sweden | 49.08 | 38.68 | 56.39 | 5.45 | 11.27 | −0.32 | −1.09 |
Iceland | 72.15 | 58.84 | 78.19 | 5.81 | 8.24 | −0.99 | −0.16 |
Norway | 64.13 | 57.10 | 74.63 | 5.28 | 8.16 | 0.26 | −1.07 |
United Kingdom | 4.43 | 1.09 | 12.34 | 3.68 | 67.32 | 0.49 | −1.05 |
Country | Average | Median | Minimum | Maximum | Standard Deviation | Coefficient of Variation (%) | Skewed-Ness | Kurt-Osis |
---|---|---|---|---|---|---|---|---|
Germany | 2.08 | 2.10 | 1.88 | 2.25 | 0.15 | 7.34 | −0.16 | −1.57 |
Latvia | 242.44 | 1.55 | 1.10 | 980.00 | 418.94 | 172.80 | 1.06 | −0.72 |
Sweden | 1.42 | 1.42 | 1.31 | 1.55 | 0.10 | 7.18 | 0.12 | −1.65 |
France | 419.06 | 550.00 | 1.04 | 950.00 | 408.37 | 97.45 | −0.03 | −1.69 |
Austria | 534.75 | 893.00 | 1.00 | 962.00 | 499.64 | 93.43 | -0.28 | −1.91 |
Estonia | 467.44 | 500.00 | 1.00 | 900.00 | 372.60 | 79.71 | −0.13 | −1.34 |
Poland | 730.00 | 610.00 | 600.00 | 950.00 | 161.66 | 22.15 | 0.38 | −1.73 |
Spain | 396.43 | 410.00 | 240.00 | 550.00 | 134.62 | 33.96 | −0.01 | −1.64 |
Portugal | 653.57 | 700.00 | 500.00 | 800.00 | 112.20 | 17.17 | −0.48 | −1.05 |
Total | 12.53 | 13.10 | 9.47 | 14.25 | 1.86 | 14.89 | −0.65 | −1.07 |
Specification | Coefficient of Autocorrelation | p Value | t Statistics |
---|---|---|---|
Total gross heat production from solid biomass | 0.032 | 0.525 | −1.456 |
Global wood pellet production in the world | −0.041 | 1.000 | 4.394 |
Wood pellet production in Poland | −0.010 | 0.998 | 1.408 |
Specification | ADF Test with Intercept | ADF Test with Intercept and Trend | ||||||
---|---|---|---|---|---|---|---|---|
Coefficient of Autocorrelation | p Value | t Statistics | Autocorrelation of First-Order Residuals | Coefficient of Autocorrelation | p Value | t Statistics | Autocorrelation of First-Order Residuals | |
Total gross heat production from solid biomass | −0.925 | 0.056 | −3.048 | 0.001 | −1.003 | 0.145 | −3.106 | −0.029 |
Global wood pellet production in the world | 0.099 | 0.989 | 0.597 | −0.336 | −0.807 | 0.126 | −3.141 | −0.069 |
Wood pellet production in Poland | −0.805 | 0.077 | −2.845 | 0.069 | −1.494 | 0.016 | −3.819 | 0.007 |
Specification | Coefficient | Std. Error | z | p Value |
---|---|---|---|---|
Constant | 326.48 | 14.96 | 21.82 | 0.000 |
Alpha (0) | 460.03 | 674.87 | 0.68 | 0.50 |
Alpha (1) | 0.34 | 0.30 | 1.14 | 0.26 |
Beta (1) | 0.45 | 0.20 | 2.25 | 0.02 |
Arithmetic mean of the dependent variable—258.80 Standard deviation of dependent change—122.24 Likelihood log—89.39 Akaike’s information criterion—188.77 Bayesian Schwarz criterion—192.31 Hannan–Quinn criterion—188.73 Unconditional variance of model error—2269.56 Likelihood-ratio test for the (G) ARCH: Chi-square (2)—11.7486 [0.031] |
Years | Prognosis | Std. Error | 95% Confidence Interval |
---|---|---|---|
2019 | 377.0 | 330.4 | (295.2–450.8) |
2020 | 377.3 | 52.54 | (274.3–480.3) |
2021 | 375.6 | 68.95 | (240.4–510.7) |
2022 | 374.2 | 77.82 | (221.7–526.7) |
2023 | 373.1 | 73.11 | (210.2–536.0) |
Specification | Coefficient | Std. Error | z | p Value |
---|---|---|---|---|
Constant | 15.61 | 3.36 | 4.65 | 0.000 |
Alpha (0) | 9.70 | 17.56 | 0.55 | 0.58 |
Alpha (1) | 0.91 | 0.61 | 1.50 | 0.13 |
Beta (1) | 1.000 | 0.52 | 1.93 | 1.00 |
Arithmetic mean of the dependent variable—24.26929 Standard deviation of dependent change—15.73396 Likelihood log—52.05360 Akaike’s information criterion—114.1072 Bayesian Schwarz criterion—117.3025 Hannan–Quinn criterion—113.8114 Unconditional variance of model error—111.913 Likelihood-ratio test for the (G) ARCH: Chi-square (2)—11.7486 [0.00281081] |
Years | Prognosis | Std. Error | 95% Range |
---|---|---|---|
2019 | 64.79 | 0.73 | (63.35–66.23) |
2020 | 75.25 | 0.74 | (73.79–76.70) |
2021 | 87.33 | 0.75 | (85.85–88.80) |
2022 | 101.27 | 0.76 | (99.76–102.77) |
2023 | 117.36 | 0.79 | (115.82–118.91) |
Spcification | Coefficient | Std. Error | Z | p Value |
---|---|---|---|---|
Constant | 609.73 | 58.67 | 10.39 | 0.00 |
Alpha (0) | 7895.39 | 8796.84 | 0.89 | 0.36 |
Alpha (1) | 0.83 | 0.50 | 1.65 | 0.09 |
Beta (1) | 1.05 | 0.461 | 0.00 | 1.00 |
Arithmetic mean of the dependent variable—621.2500 Standard deviation of the dependent variable—333.3042 Log-of-Plausibility—109.9101 Akaike’s information criterion—229.8201 Bayesian Schwarz criterion—233.6831 Hannan–Quinn criterion—230.0179 Unconditional variance of model error—46 712.7 Likelihood-ratio test for the (G) ARCH: Chi-square (2)—10.4431 [0.00539905] |
Year | Prognosis | Error | 95% Range |
---|---|---|---|
2020 | 1450.91 | 60.85 | 1331.64–1570.18 |
2021 | 1613.48 | 80.72 | 1455.27–1771.69 |
2022 | 1792.17 | 99.57 | 1597.01–1987.32 |
2023 | 1988.56 | 118.40 | 1756.49–2220.63 |
2024 | 2204.42 | 137.762 | 1934.41–2474.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bełdycka-Bórawska, A.; Bórawski, P.; Borychowski, M.; Wyszomierski, R.; Bórawski, M.B.; Rokicki, T.; Ochnio, L.; Jankowski, K.; Mickiewicz, B.; Dunn, J.W. Development of Solid Biomass Production in Poland, Especially Pellet, in the Context of the World’s and the European Union’s Climate and Energy Policies. Energies 2021, 14, 3587. https://doi.org/10.3390/en14123587
Bełdycka-Bórawska A, Bórawski P, Borychowski M, Wyszomierski R, Bórawski MB, Rokicki T, Ochnio L, Jankowski K, Mickiewicz B, Dunn JW. Development of Solid Biomass Production in Poland, Especially Pellet, in the Context of the World’s and the European Union’s Climate and Energy Policies. Energies. 2021; 14(12):3587. https://doi.org/10.3390/en14123587
Chicago/Turabian StyleBełdycka-Bórawska, Aneta, Piotr Bórawski, Michał Borychowski, Rafał Wyszomierski, Marek Bartłomiej Bórawski, Tomasz Rokicki, Luiza Ochnio, Krzysztof Jankowski, Bartosz Mickiewicz, and James W. Dunn. 2021. "Development of Solid Biomass Production in Poland, Especially Pellet, in the Context of the World’s and the European Union’s Climate and Energy Policies" Energies 14, no. 12: 3587. https://doi.org/10.3390/en14123587
APA StyleBełdycka-Bórawska, A., Bórawski, P., Borychowski, M., Wyszomierski, R., Bórawski, M. B., Rokicki, T., Ochnio, L., Jankowski, K., Mickiewicz, B., & Dunn, J. W. (2021). Development of Solid Biomass Production in Poland, Especially Pellet, in the Context of the World’s and the European Union’s Climate and Energy Policies. Energies, 14(12), 3587. https://doi.org/10.3390/en14123587