Structural and Catalytic Characterization of La0.6Sr0.4MnO3 Nanofibers for Application in Direct Methane Intermediate Temperature Solid Oxide Fuel Cell Anodes
Abstract
:1. Introduction
2. Experimental
2.1. La0.6Sr0.4MnO3 Nanofibers Preparation
2.2. La0.6Sr0.4MnO3 Powders Preparation
2.3. Morphological and Structural Characterization
2.4. Catalytic Characterization
3. Results and Discussion
3.1. Morphological Characterization
3.2. Chemical Characterization
3.3. Temperature Programmed Reduction (H2-TPR) and N2-Adsorption-Desorption
3.4. Methane Oxidation Catalytic Activity Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- da Silva, F.S.; de Souza, T.M. Novel materials for solid oxide fuel cell technologies: A literature review. Int. J. Hydrogen Energy 2017, 42, 26020–26036. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Goodenough, J.B. Solid Oxide Fuel Cell Technology; Woodhead Publishing Limited: Cambridge, UK, 2009. [Google Scholar]
- Mehmeti, A.; McPhail, S.J.; Pumiglia, D.; Carlini, M. Life cycle sustainability of solid oxide fuel cells: From methodological aspects to system implications. J. Power Sources 2016, 325, 772–785. [Google Scholar] [CrossRef]
- Stambouli, A.; Traversa, E. Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy. Renew. Sustain. Energy Rev. 2002, 6, 433–455. [Google Scholar] [CrossRef]
- Kaur, P.; Singh, K. Review of perovskite-structure related cathode materials for solid oxide fuel cells. Ceram. Int. 2020, 46, 5521–5535. [Google Scholar] [CrossRef]
- Panthi, D.; Choi, B.; Tsutsumi, A. Direct methane operation of a micro-tubular solid oxide fuel cell with a porous zirconia support. J. Solid State Electrochem. 2017, 21, 255–262. [Google Scholar] [CrossRef]
- Costamagna, P.; Costa, P.; Antonucci, V. Micro-modelling of solid oxide fuel cell electrodes. Electrochim. Acta 1998, 43, 375–394. [Google Scholar] [CrossRef]
- Tu, B.; Yin, Y.; Zhang, F.; Su, X.; Lyu, X.; Cheng, M. High performance of direct methane-fuelled solid oxide fuel cell with sa-marium modified nickel-based anode. Int. J. Hydrogen Energy 2020, 45, 27587–27596. [Google Scholar] [CrossRef]
- Park, S.; Craciun, R.; Vohs, J.M.; Gorte, R.J. Direct oxidation of sulfur-containing fuels in a solid oxide fuel cell. J. Electrochem. Soc. 1999, 146, 3603–3605. [Google Scholar] [CrossRef]
- Liu, J.; Madsen, B.D.; Ji, Z.; Barnett, S.A. A Fuel-Flexible Ceramic-Based Anode for Solid Oxide Fuel Cells. Electrochem. Solid-State Lett. 2002, 5, A122–A124. [Google Scholar] [CrossRef]
- Grgicak, C.M.; Green, R.G.; Giorgi, J.B. SOFC anodes for direct oxidation of hydrogen and methane fuels containing H2S. J. Power Sources 2008, 179, 317–328. [Google Scholar] [CrossRef]
- Perry Murray, E.; Tsai, T.; Barnett, S.A. A direct-methane fuel cell with a ceria-based anode. Nature 1999, 400, 649–651. [Google Scholar] [CrossRef]
- Yang, G.; Jung, W.; Ahn, S.-J.; Lee, D. Controlling the Oxygen Electrocatalysis on Perovskite and Layered Oxide Thin Films for Solid Oxide Fuel Cell Cathodes. Appl. Sci. 2019, 9, 1030. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.P. Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells—A review. Int. J. Hydrogen Energy 2019, 44, 7448–7493. [Google Scholar] [CrossRef]
- Richter, J.; Holtappels, P.; Graule, T.; Nakamura, T.; Gauckler, L.J. Materials design for perovskite SOFC cathodes. Monatshefte Chem. Chem. Mon. 2009, 140, 985–999. [Google Scholar] [CrossRef] [Green Version]
- Jun, A.; Kim, J.; Shin, J.; Kim, G. Perovskite as a Cathode Material: A Review of its Role in Solid-Oxide Fuel Cell Tech-nology. ChemElectroChem 2016, 3, 511–530. [Google Scholar] [CrossRef]
- Escudero, M.; Irvine, J.; Daza, L. Development of anode material based on La-substituted SrTiO3 perovskites doped with manganese and/or gallium for SOFC. J. Power Sources 2009, 192, 43–50. [Google Scholar] [CrossRef]
- Mailadil, T.S. ABO3 type perovskites. In Dielectric Materials for Wireless Communication; Elsevier Science: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Jiang, S.P. Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: A review. J. Mater. Sci. 2008, 43, 6799–6833. [Google Scholar] [CrossRef]
- Farrell, B.L.; Linic, S. Oxidative coupling of methane over mixed oxide catalysts designed for solid oxide membrane reactors. Catal. Sci. Technol. 2016, 6, 4370–4376. [Google Scholar] [CrossRef]
- Chen, X.J.; Liu, Q.L.; Khor, K.A.; Chan, S.H. High-performance (La,Sr)(Cr,Mn)O3/(Gd,Ce)O2-δ composite anode for direct ox-idation of methane. J. Power Sources 2007, 165, 34–40. [Google Scholar] [CrossRef]
- Costamagna, P.; Sanna, C.; Campodonico, A.; Sala, E.M.; Sažinas, R.; Holtappels, P. Electrochemical Impedance Spectroscopy of Electrospun La0.6Sr0.4Co0.2Fe0.8O3–Δ Nanorod Cathodes for Intermediate Temperature–Solid Oxide Fuel Cells. Fuel Cells 2019, 19, 472–483. [Google Scholar]
- Enrico, A.; Zhang, W.; Traulsen, M.L.; Sala, E.M.; Costamagna, P.; Holtappels, P. La0.6Sr0.4Co0.2Fe0.8O3-δ nanofiber cathode for intermediate-temperature solid oxide fuel cells by water-based sol-gel electrospinning: Synthesis and electrochemical behaviour. J. Eur. Ceram. Soc. 2018, 38, 2677–2686. [Google Scholar] [CrossRef] [Green Version]
- Sanna, C.; Zhang, W.; Costamagna, P.; Holtappels, P. Synthesis and electrochemical characterization of electrospun nanofiber cathodes for intermediate-temperature solid oxide fuel cells. Int. J. Hydrogen Energy 2020, 46, 13818–13831. [Google Scholar] [CrossRef]
- Zhao, E.; Liu, X.; Liu, L.; Huo, H.; Xiong, Y. Effect of La0.8Sr0.2Co0.2Fe0.8O3-δ morphology on the performance of composite cathodes. Prog. Nat. Sci. Mater. Int. 2014, 24, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Jeon, Y.; Myung, J.H.; Hyun, S.H.; Shul, Y.G.; Irvine, J.T. Corn-cob like nanofibres as cathode catalysts for an effective microstructure design in solid oxide fuel cells. J. Mater. Chem. A 2017, 5, 3966–3973. [Google Scholar] [CrossRef] [Green Version]
- Koo, J.Y.; Lim, Y.; Kim, Y.B.; Byun, D.; Lee, W. Electrospun yttria-stabilized zirconia nanofibers for low-temperature solid oxide fuel cells. Int. J. Hydrogen Energy 2017, 42, 15903–15907. [Google Scholar] [CrossRef]
- Fan, L.; Xiong, Y.; Liu, L.; Wang, Y.; Kishimoto, H.; Yamaji, K.; Horita, T. Performance of Gd0.2Ce0.8O1.9 infiltrated La0.2Sr0.8TiO3 nanofiber scaffolds as anodes for solid oxide fuel cells. J. Power Sources 2014, 265, 125–131. [Google Scholar] [CrossRef]
- Zhang, W. Electrospinning for Solid Oxide Fuel Cells. In Electrospinning for Advanced Energy and Environmental Applications; CRC Press; Taylor & Francis Group: Boca Raton, FL, USA, 2016. [Google Scholar]
- Teo, W.E.; Ramakrishna, S. A review on electrospinning design and nanofibre assemblies. Nanotechnology 2006, 17, R89–R106. [Google Scholar] [CrossRef]
- Deitzel, J.; Kleinmeyer, J.; Harris, D.; Tan, N.B. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001, 42, 261–272. [Google Scholar] [CrossRef]
- Aruna, S.; Balaji, L.; Kumar, S.S.; Prakash, B.S. Electrospinning in solid oxide fuel cells—A review. Renew. Sustain. Energy Rev. 2017, 67, 673–682. [Google Scholar] [CrossRef]
- Costamagna, P.; Holtappels, P.; Sanna, C. Metal Oxide Nanofiber-Based Electrodes in Solid Oxide Fuel Cells. In Metal Oxide-Based Nanofibers Their Applications; Elsevier: Amsterdam, The Netherlands, in press.
- Marcilly, C.; Courty, P.; Delmon, B. Preparation of highly dispersed mixed oxides and oxide solid solutions. J. Am. Ceram. Soc. 1970, 53, 56. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Waltham, MA, USA, 1992. [Google Scholar]
- Mills, K.A.; Davis, R.F.; Kevan, S.D.; Thornton, G.; Shirley, D.A. Angle-resolved photoemission determination of Λ-line valence bands in Pt and Au using synchrotron radiation. Phys. Rev. B 1980, 22, 581–592. [Google Scholar] [CrossRef]
- Wagner, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F.; Muilenberg, G.E. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corp., Physical Electronics Division: Eden Prairie, MN, USA, 1979. [Google Scholar]
- Wu, Q.H.; Liu, M.; Jaegermann, W. X-ray photoelectron spectroscopy of LaSrMnO3. Mater. Lett. 2005, 59, 1980–1983. [Google Scholar] [CrossRef]
- Caillol, N.; Pijolat, M.; Siebert, E. Investigation of chemisorbed oxygen, surface segregation and effect of post-treatments on La0.8Sr0.2MnO3 powder and screen-printed layers for solid oxide fuel cell cathodes. Appl. Surf. Sci. 2007, 253, 4641–4648. [Google Scholar] [CrossRef]
- Jiang, S.P.; Love, J.G.; Zhang, J.P.; Hoang, M.; Ramprakash, Y.; Hughes, A.E.; Badwal, S.P.S. The electrochemical performance of LSM/zirconia-yttria interface as a function of a-site non-stoichiometry and cathodic current treatment. Solid State Ion. 1999, 121, 1–10. [Google Scholar] [CrossRef]
- Horvath, G.; Gerblinger, J.; Meixner, H.; Giber, J. Segregation driving forces in perovskite titanates. Sens. Actuators B Chem. 1996, 32, 93–99. [Google Scholar] [CrossRef]
- Nowotny, J. Interface defect chemistry of oxide ceramic materials. Solid State Ion. 1991, 49, 119–128. [Google Scholar] [CrossRef]
- Glisenti, A.; Galenda, A.; Natile, M.M. LaMnO3: Influence of the Addition of Ba and Sr. Surf. Sci. Spectra 2009, 16, 83. [Google Scholar] [CrossRef]
- Natile, M.M.; Ugel, E.; Maccato, C.; Glisenti, A. LaCoO3: Effect of synthesis conditions on properties and reactivity. Appl. Catal. B Environ. 2007, 72, 351–362. [Google Scholar] [CrossRef]
- Vasquez, R.P. X-ray photoemission measurements of La1−xCaxCoO3 (x = 0, 0.5). Phys. Rev. B 1996, 54, 14938–14941. [Google Scholar] [CrossRef] [PubMed]
- Berger, D.; Matei, C.; Papa, F.; Macovei, D.; Fruth, V.; Deloume, J.P. Pure and doped lanthanum manganites obtained by com-bustion method. J. Eur. Ceram. Soc. 2007, 27, 4395–4398. [Google Scholar] [CrossRef]
- Murray, J.W.; Dillard, J.G.; Giovanoli, R.; Moers, H.; Stumm, W. Oxidation of Mn(II): Initial mineralogy, oxidation state and ageing. Geochim. Cosmochim. Acta 1985, 49, 463–470. [Google Scholar] [CrossRef]
- Florea, M.; Somacescu, S.; Postole, G.; Urda, A.; Neatu, F.; Neatu, S.; Massin, L.; Gelin, P. La0.75Sr0.25XO3 (X = Fe, Mn or Cr) with coking tolerance for CH4/H2O reaction: Effect of H2S on catalytic performance. Catal. Sci. Technol. 2019, 9, 2351–2366. [Google Scholar] [CrossRef]
- Dollimore, D.; Spooner, P.; Turner, A.D. The bet method of analysis of gas adsorption data and its relevance to the calculation of surface areas. Surf. Technol. 1976, 4, 121–160. [Google Scholar] [CrossRef]
- Chen, Y.; Bu, Y.; Zhang, Y.X.; Yan, R.; Ding, D.; Zhao, B.; Yoo, S.; Dang, D.; Hu, R.; Yang, C.; et al. A Highly Efficient and Robust Nanofiber Cathode for Solid Oxide Fuel Cells. Adv. Energy Mater. 2017, 7, 1601890. [Google Scholar] [CrossRef]
Theoretical % | XPS Experimental % | EDX Experimental % | |||
---|---|---|---|---|---|
Element | Nominal % | Fibers | Powders | Fibers | Powders |
O | 60 | 58 | 74 | 62 | 58 |
La | 12 | 15 | 4 | 12 | 12 |
Sr | 8 | 6 | 7 | 7 | 7 |
Mn | 20 | 21 | 15 | 19 | 22 |
Mn/(La + Sr) | 1 | 1 | 1.4 | 1 | 1.2 |
Sr/La | 0.7 | 0.4 | 1.7 | 0.6 | 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Squizzato, E.; Sanna, C.; Glisenti, A.; Costamagna, P. Structural and Catalytic Characterization of La0.6Sr0.4MnO3 Nanofibers for Application in Direct Methane Intermediate Temperature Solid Oxide Fuel Cell Anodes. Energies 2021, 14, 3602. https://doi.org/10.3390/en14123602
Squizzato E, Sanna C, Glisenti A, Costamagna P. Structural and Catalytic Characterization of La0.6Sr0.4MnO3 Nanofibers for Application in Direct Methane Intermediate Temperature Solid Oxide Fuel Cell Anodes. Energies. 2021; 14(12):3602. https://doi.org/10.3390/en14123602
Chicago/Turabian StyleSquizzato, Enrico, Caterina Sanna, Antonella Glisenti, and Paola Costamagna. 2021. "Structural and Catalytic Characterization of La0.6Sr0.4MnO3 Nanofibers for Application in Direct Methane Intermediate Temperature Solid Oxide Fuel Cell Anodes" Energies 14, no. 12: 3602. https://doi.org/10.3390/en14123602
APA StyleSquizzato, E., Sanna, C., Glisenti, A., & Costamagna, P. (2021). Structural and Catalytic Characterization of La0.6Sr0.4MnO3 Nanofibers for Application in Direct Methane Intermediate Temperature Solid Oxide Fuel Cell Anodes. Energies, 14(12), 3602. https://doi.org/10.3390/en14123602