Health-Conscious Optimization of Long-Term Operation for Hybrid PEMFC Ship Propulsion Systems
Abstract
:1. Introduction
2. Methodology
2.1. Energy System Constraints
2.2. Polymer Electrolyte Membrane Fuel Cells Model
2.3. Lithium Iron Phosphate Battery Model
2.4. Objective Functions
3. Case Study
4. Results
4.1. Plant Lifetime Estimation
4.2. Health-Conscious Optimal Daily Operation over the Entire Lifetime
4.3. Behaviour of the Energy System Variables during the Plant Lifetime
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Nomenclature
BESS | Battery Energy Storage System |
DOD | Depth of Discharge |
EMS | Energy Management Strategy |
FM | Fuel consumption Minimization |
H2 | Hydrogen |
LFP | Lithium Iron Phosphate |
LIB | Lithium-Ion Batteries |
MILP | Mixed-Integer Linear Programming |
MIQP | Mixed-Integer Quadratic Programming |
NMC | Nickel Manganese Cobalt |
PEMFC | Polymer Electrolyte Membrane Fuel Cells |
RO-Pax | Roll-On/roll-off Passengers |
SEI | Solid Electrolyte Interface |
SOC | State of Charge |
SOFC | Solid Oxide Fuel Cells |
SOH | State of Health |
Generic objective function of a MILP optimization problem | |
Generic continuous variable of a MILP optimization problem | |
Generic binary variable of a MILP optimization problem | |
Equality constraints of a generic MILP optimization problem | |
Inequality constraints of a generic MILP optimization problem | |
t | Time |
Propulsion and auxiliary power demand of the ferry | |
j | Index for PEMFC stacks |
Power output of a PEMFC stack | |
Discharging power of LIB | |
Charging power of LIB | |
n | Number of PEMFC stacks |
Initial time step for one day of operation | |
Last time step of one day of operation | |
Fuel consumption of a PEMFC stack | |
PEMFC stack rated power | |
Volume occupied by the hydrogen storage | |
Volume occupied by a PEMFC stack | |
Volume occupied by LIB | |
Weight of bunkered hydrogen | |
Weight of a PEMFC stack | |
Weight of LIB | |
Oversizing correction factor | |
Current density of PEMFC stack | |
, | Linearization coefficients |
, | Linearization coefficients |
Binary variable defining on/off status of PEMFC stacks | |
Binary variable defining the occurrence of PEMFC start-up phase | |
Fuel consumption in a start-up phase | |
Lower limit of PEMFC current density | |
Upper limit of PEMFC current density | |
Allowed load variation of a PEMFC stack | |
PEMFC voltage loss due to load variation | |
Proportionality constant | |
Proportionality constant | |
PEMFC voltage loss due to start-up | |
PEMFC voltage loss due to power load | |
, | Linearization coefficients |
Total loss of voltage of PEMFC (not cumulative) | |
Cumulative loss of voltage of PEMFC | |
, | Linearization coefficients |
Reference maximum voltage for new PEMFC | |
PEMFC stack efficiency | |
Energy stored in LIB | |
Charging/discharging efficiency of LIB | |
Energy capacity of LIB | |
Time interval between two consecutive time steps | |
C-rate of LIB in charging/discharging phase | |
Upper limit on LIB C-rate | |
SOC constraint to limit the calendar ageing | |
Temperature of LIB | |
, | Linearization coefficients |
Capacity fade of LIB | |
Ambient temperature | |
, | Linearization coefficients |
Energy throughput of LIB | |
, , | Proportionality constants |
, , | Proportionality constants |
Number of days per month | |
Number of equivalent cycles of LIB | |
Capacity of a LIB single cell | |
Lower limit on SOC | |
Upper limit on SOC | |
, , | Weights of the objective functions |
, , | Objective functions |
Blended objective function | |
Cost of hydrogen | |
Cost of LIB | |
Cost of PEMFC | |
PEMFC loss of voltage allowed before substituting PEMFC | |
Maximum capacity fade before substituting LIB |
Appendix A
References
- Van Biert, L.; Godjevac, M.; Visser, K.; Aravind, P.V. A review of fuel cell systems for maritime applications. J. Power Source 2016, 327, 345–364. [Google Scholar] [CrossRef] [Green Version]
- Tronstad, T.; Åstrand, H.H.; Haugom, G.P.; Langfeldt, L. Study on the Use of Fuel Cells in Shipping; European Maritime Safety Agency: Lisboa, Portugal, 2017.
- Dall’Armi, C.; Micheli, D.; Taccani, R. Comparison of different plant layouts and fuel storage solutions for fuel cells utilization on a small ferry. Int. J. Hydrogen Energy 2021, 46, 13878–13897. [Google Scholar] [CrossRef]
- Anwar, S.; Zia, M.Y.I.; Rashid, M.; de Rubens, G.Z.; Enevoldsen, P. Towards Ferry Electrification in the Maritime Sector. Energies 2020, 13, 6506. [Google Scholar] [CrossRef]
- European Maritime Safety Agency (EMSA). Study on Electrical Energy Storage for Ships; EMSA: Lisboa, Portugal, 2020.
- Elektra Project: Ballard Receives PO from BEHALA for 3 × 100 kW Fuel Cell Modules to Power German Push Boat. Available online: https://www.ballard.com/about-ballard/newsroom/news-releases/2019/10/02/ballard-receives-po-from-behala-for-3-x-100kw-fuel-cell-modules-to-power-german-push-boat (accessed on 12 January 2021).
- Elektra Project: Brennstoffzellen an Bord von Schiffen. Available online: https://www.e4ships.de/english/inland-shipping/elektra/ (accessed on 12 January 2021).
- Energy Observer. Available online: https://www.energy-observer.org/ (accessed on 12 January 2021).
- Energy Observer: Energy Balance Nassau—Fort-de-France. Available online: https://www.energy-observer.org/innovations/navigation-nassau-fort-de-france (accessed on 12 January 2021).
- Sjø, B. Rapport fase 2 Utviklingskontrakt utslippsfri hurtigbåt. In Doffin 2017-138144 Brødrene Aa Westcon Power & Automation; 2017; Available online: https://www.trondelagfylke.no/contentassets/bd8d4260feb14f6bb7503ddc6360e168/brodrene-aa-sluttrapport-offentlig.pdf (accessed on 19 April 2020).
- Brødrene Aa Presents the “AERO” a Newly Developed Hydrogen Fast Ferry Concept—Fuel Cells Works. Available online: https://fuelcellsworks.com/news/brodrene-aa-presents-the-aero-a-newly-developed-hydrogen-fast-ferry-concept/ (accessed on 12 January 2021).
- Race for Water—A Foundation to Preserve Water. Available online: https://www.raceforwater.org/en/ (accessed on 12 January 2021).
- Future Proof Shipping—Creating a Zero-Emissions Shipping World. Available online: https://www.futureproofshipping.com/ (accessed on 12 January 2021).
- Toyota Tsusho Conducts Joint Research with Yanmar on Fuel Cell System for Boats—Toward the Creation of a Hydrogen Society by Expanding the Use of Hydrogen. Available online: https://www.toyota-tsusho.com/english/press/detail/180326_004178.html (accessed on 12 January 2021).
- Ballard Fuel Cell Modules Used in Successful Yanmar Boat Test to Support Development of Safety Guidelines in Japan. Available online: https://www.prnewswire.com/news-releases/ballard-fuel-cell-modules-used-in-successful-yanmar-boat-test-to-support-development-of-safety-guidelines-in-japan-678507543.html (accessed on 12 January 2021).
- Water-Go-Round. Available online: https://watergoround.com/ (accessed on 12 January 2021).
- SW/TCH Maritime. Available online: https://www.switchmaritime.com/ (accessed on 16 March 2021).
- Enova Banebrytende Samarbeid Gir Millioner til Utslippsfri Teknologi. Available online: https://www.enova.no/pilot-e/banebrytende-samarbeid-gir-millioner-til-utslippsfri-maritim-teknologi/ (accessed on 12 January 2021).
- Enova PILOT-E. Available online: https://www.enova.no/pilot-e/ (accessed on 12 January 2021).
- Madsen, R.T.; Klebanoff, L.E.; Caughlan, S.A.M.; Pratt, J.W.; Leach, T.S.; Appelgate, T.B.; Kelety, S.Z.; Wintervoll, H.C.; Haugom, G.P.; Teo, A.T.Y.; et al. Feasibility of the Zero-V: A zero-emissions hydrogen fuel-cell coastal research vessel. Int. J. Hydrogen Energy 2020, 45, 25328–25343. [Google Scholar] [CrossRef]
- Sandia Energy Maritime Applications for Hydrogen Fuel Cells. Available online: https://energy.sandia.gov/programs/sustainable-transportation/hydrogen/fuel-cells/maritime-applications/ (accessed on 12 January 2021).
- Choi, C.H.; Yu, S.; Han, I.S.; Kho, B.K.; Kang, D.G.; Lee, H.Y.; Seo, M.S.; Kong, J.W.; Kim, G.; Ahn, J.W.; et al. Development and demonstration of PEM fuel-cell-battery hybrid system for propulsion of tourist boat. Int. J. Hydrogen Energy 2016, 41, 3591–3599. [Google Scholar] [CrossRef]
- Zemship Project Website. Available online: https://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3081 (accessed on 24 April 2020).
- Vogler, F.; Würsig, G. Fuel cells in maritime applications: Challenges, chances and experiences. In Proceedings of the 4th International 527 Conference on Hydrogen Safety (ICHS), San Francisco, CA, USA, 12–14 September 2011. [Google Scholar]
- Zemship Project. One Hundred Passengers and Zero Emissions—The First ever Passenger Vessel to Sail Propelled by Fuel Cells, 2013. Available online: https://webgate.ec.europa.eu/life/publicWebsite/index.cfm?fuseaction=search.dspPage&n_proj_id=3081 (accessed on 19 April 2020).
- Fuel Cell Boat, Amsterdam, The Netherlands. Available online: http://www.opr-advies.nl/fuelcellboat/efcbboot.html (accessed on 12 January 2021).
- He, Y.; Miao, C.; Wu, J.; Zheng, X.; Liu, X.; Liu, X.; Han, F. Research on the Power Distribution Method for Hybrid Power System in the Fuel Cell Vehicle. Energies 2021, 14, 734. [Google Scholar] [CrossRef]
- Sorlei, I.S.; Bizon, N.; Thounthong, P.; Varlam, M.; Carcadea, E.; Culcer, M.; Iliescu, M.; Raceanu, M. Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies. Energies 2021, 14, 252. [Google Scholar] [CrossRef]
- Taccani, R.; Malabotti, S.; Dall’Armi, C.; Micheli, D. High energy density storage of gaseous marine fuels: An innovative concept and its application to a hydrogen powered ferry. Int. Shipbuild. Prog. 2020, 67, 29–52. [Google Scholar] [CrossRef]
- Han, J.; Charpentier, J.-F.; Tang, T. An Energy Management System of a Fuel Cell/Battery Hybrid Boat. Energies 2014, 7, 2799–2820. [Google Scholar] [CrossRef] [Green Version]
- Bassam, A.M.; Phillips, A.B.; Turnock, S.R.; Wilson, P.A. An improved energy management strategy for a hybrid fuel cell/battery passenger vessel. Int. J. Hydrogen Energy 2016, 41, 22453–22464. [Google Scholar] [CrossRef] [Green Version]
- Rivarolo, M.; Rattazzi, D.; Lamberti, T.; Magistri, L. Clean energy production by PEM fuel cells on tourist ships: A time-dependent analysis. Int. J. Hydrogen Energy 2020, 45, 25747–25757. [Google Scholar] [CrossRef]
- Rivarolo, M.; Rattazzi, D.; Magistri, L. Best operative strategy for energy management of a cruise ship employing different distributed generation technologies. Int. J. Hydrogen Energy 2018, 43, 23500–23510. [Google Scholar] [CrossRef]
- Bassam, A.M.; Phillips, A.B.; Turnock, S.R.; Wilson, P.A. Development of a multi-scheme energy management strategy for a hybrid fuel cell driven passenger ship. Int. J. Hydrogen Energy 2017, 42, 623–635. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Guan, C.; Liu, Z. Real-Time Optimization Energy Management Strategy for Fuel Cell Hybrid Ships Considering Power Sources Degradation. IEEE Access 2020, 8, 87046–87059. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Z.; Guan, C.; Gao, H. Optimization of sizing and frequency control in battery/supercapacitor hybrid energy storage system for fuel cell ship. Energy 2020, 197. [Google Scholar] [CrossRef]
- Wu, P.; Bucknall, R. Hybrid fuel cell and battery propulsion system modelling and multi-objective optimisation for a coastal ferry. Int. J. Hydrogen Energy 2020, 45, 3193–3208. [Google Scholar] [CrossRef]
- Wu, P.; Partridge, J.; Bucknall, R. Cost-effective reinforcement learning energy management for plug-in hybrid fuel cell and battery ships. Appl. Energy 2020, 275, 115258. [Google Scholar] [CrossRef]
- Pivetta, D.; Dall’Armi, C.; Taccani, R. Multi-objective optimization of hybrid PEMFC/Li-ion battery propulsion systems for small and medium size ferries. Int. J. Hydrogen Energy 2021. In Press. [Google Scholar] [CrossRef]
- Kandidayeni, M.; Macias, A.; Boulon, L.; Trovão, J.P.F. Online modeling of a fuel cell system for an energy management strategy design. Energies 2020, 13, 3713. [Google Scholar] [CrossRef]
- Ghobadpour, A.; Amamou, A.; Kelouwani, S.; Zioui, N.; Zeghmi, L. Impact of powertrain components size and degradation level on the energy management of a hybrid industrial self-guided vehicle. Energies 2020, 13, 5041. [Google Scholar] [CrossRef]
- Fletcher, T.; Ebrahimi, K. The Effect of Fuel Cell and Battery Size on Efficiency and Cell Lifetime for an L7e Fuel Cell Hybrid Vehicle. Energies 2020, 13, 5889. [Google Scholar] [CrossRef]
- Çınar, H.; Kandemir, I. Active energy management based on meta-heuristic algorithms of fuel cell/battery/supercapacitor energy storage system for aircraft. Aerospace 2021, 8, 85. [Google Scholar] [CrossRef]
- Liang, J.; Li, Y.; Jia, W.; Lin, W.; Ma, T. Comparison of Two Energy Management Strategies Considering Power System Durability for PEMFC-LIB Hybrid Logistics Vehicle. Energies 2021, 14, 3262. [Google Scholar] [CrossRef]
- Wang, Y.; Moura, S.J.; Advani, S.G.; Prasad, A.K. Power management system for a fuel cell/battery hybrid vehicle incorporating fuel cell and battery degradation. Int. J. Hydrogen Energy 2019, 44, 8479–8492. [Google Scholar] [CrossRef]
- Li, H.; Ravey, A.; N’Diaye, A.; Djerdir, A. Online adaptive equivalent consumption minimization strategy for fuel cell hybrid electric vehicle considering power sources degradation. Energy Convers. Manag. 2019, 192, 133–149. [Google Scholar] [CrossRef]
- Yue, M.; Jemei, S.; Gouriveau, R. Review on health-conscious energy management strategies for fuel cell hybrid electric vehicles: Degradation models and strategies. Int. J. Hydrogen Energy 2019, 44, 6844–6861. [Google Scholar] [CrossRef]
- Ito, K.; Yokoyama, R.; Shiba, T. Optimal operation of a diesel engine cogeneration plant including a heat storage tank. J. Eng. Gas Turbines Power 1992, 114, 687–694. [Google Scholar] [CrossRef]
- Rech, S. Smart Energy Systems: Guidelines for Modelling and Optimizing a Fleet of Units of Different Configurations. Energies 2019, 12, 1320. [Google Scholar] [CrossRef] [Green Version]
- Pivetta, D.; Rech, S.; Lazzaretto, A. Choice of the Optimal Design and Operation of Multi-Energy Conversion Systems in a Prosecco Wine Cellar. Energies 2020, 13, 6252. [Google Scholar] [CrossRef]
- Rech, S.; Lazzaretto, A. Smart rules and thermal, electric and hydro storages for the optimum operation of a renewable energy system. Energy 2018, 147, 742–756. [Google Scholar] [CrossRef]
- Python. Available online: https://www.python.org/ (accessed on 24 March 2021).
- Gurobi Optimization. Available online: https://www.gurobi.com/ (accessed on 16 March 2021).
- Jouin, M.; Bressel, M.; Morando, S.; Gouriveau, R.; Hissel, D.; Péra, M.; Zerhouni, N.; Jemei, S.; Hilairet, M.; Ould, B. Estimating the end-of-life of PEM fuel cells: Guidelines and metrics. Appl. Energy 2016, 177, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, C.; Bouquain, D.; Hibon, S.; Hissel, D. Synthesis of degradation mechanisms and of their impacts on degradation rates on proton-exchange membrane fuel cells and lithium-ion nickel—Manganese—Cobalt batteries in hybrid transport applications. Reliab. Eng. Syst. Saf. 2021, 212, 107369. [Google Scholar] [CrossRef]
- Balestra, L.; Schjølberg, I. Modelling and simulation of a zero-emission hybrid power plant for a domestic ferry. Int. J. Hydrogen Energy 2021, 46, 10924–10938. [Google Scholar] [CrossRef]
- Fletcher, T.; Thring, R.; Watkinson, M. An Energy Management Strategy to concurrently optimise fuel consumption & PEM fuel cell lifetime in a hybrid vehicle. Int. J. Hydrogen Energy 2016, 41, 21503–21515. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Pei, P.; Song, M. Lifetime prediction and the economic lifetime of proton exchange membrane fuel cells. Appl. Energy 2015, 142, 154–163. [Google Scholar] [CrossRef]
- Al-gabalawy, M.; Mahmoud, K.; Darwish, M.M.F.; Dawson, J.A.; Lehtonen, M.; Hosny, N.S. Reliable and robust observer for simultaneously estimating state-of-charge and state-of-health of lifepo4 batteries. Appl. Sci. 2021, 11, 3609. [Google Scholar] [CrossRef]
- Redondo-Iglesias, E.; Venet, P.; Pelissier, S. Calendar and cycling ageing combination of batteries in electric vehicles. Microelectron. Reliab. 2018, 88–90, 1212–1215. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Liu, P.; HIcks-Garner, J.; Sherman, E.; Soukiazan, S.; Verbrugge, M.; Tataria, H.; Musser, J.; Finamore, P. Cycle-life model for graphite-LiFePO4 cells. J. Power Source 2011, 196, 3942–3948. [Google Scholar] [CrossRef]
- Dubarry, M.; Qin, N.; Brooker, P. Calendar aging of commercial Li-ion cells of different chemistries—A review. Curr. Opin. Electrochem. 2018, 9, 106–113. [Google Scholar] [CrossRef]
- Groot, J. State-of-Health Estimation of Li-Ion Batteries: Ageing Models; Chalmers University of Technology: Gothenburg, Sweden, 2014. [Google Scholar]
- Internation Energy Agency (IEA). The Future of Hydrogen; IEA: Paris, France, 2019. [Google Scholar]
- International Renewable Energy Agency (IRENA). Green Hydrogen Cost Reduction; IRENA: Abu Dhabi, United Arab Emirates, 2020. [Google Scholar]
- Ioannis, T.; Dalius, T.; Natalia, L. Li-Ion Batteries for Mobility and Stationary Storage Applications—Scenarios for Costs and Market Growth; Publications Office of the European Union: Luxembourg, 2018; ISBN 9789279972546. [Google Scholar]
- Wang, G.; Huang, F.; Yu, Y.; Wen, S.; Tu, Z. Degradation behavior of a proton exchange membrane fuel cell stack under dynamic cycles between idling and rated condition. Int. J. Hydrogen Energy 2018, 43, 4471–4481. [Google Scholar] [CrossRef]
- Marine Traffic. Available online: https://www.marinetraffic.com/ (accessed on 19 April 2020).
Project Name | Start Date | End Date | PEMFC Power | Battery Type and Capacity | Ref. |
---|---|---|---|---|---|
Elektra and Elektra 2 (e4ships consortium) | 2017 | 2024 | 300 kW | LIB, 2.5 kWh capacity | [6,7] |
Energy observer | 2017 | 2024 | 22 kW | LIB, 122 kWh propulsion, 18 kWh daily facilities | [8,9] |
Aero 42 | - | 2023 | 2800 kW | LIB, 672 kWh | [10,11] |
Race for water | 2015 | 2021 | 60 kW | LIB, 745 kWh | [12] |
Future Proof Shipping | - | 2021 | 635 kW | LIB, 300 kWh | [13] |
Kamine boat | 2018 | 2020 | 60 kW | LIB, 60 kWh | [14,15] |
Water Go Round Golden Gate Zero Emission | - | 2020 | 360 kW | 100 kWh, no data on the type | [16,17] |
Zeff (part of Pilot-E scheme) | 2018 | 2020 | 2200 kW | 50 kWh estimated; type of batteries under evaluation | [18,19] |
Zero V | - | 2017 | 1800 kW | LIB provide for 200 kW power | [20,21] |
Busan tourist boat | - | 2016 | 56 kW | LIB, 47 kWh | [22] |
ZEMSHIP FSC Alsterwasser | 2006 | 2013 | 100 kW | Lead gel, 560 V (7 × 80 V) 360 Ah | [23,24,25] |
Nemo H2 | 2008 | 2011 | 60–70 kW | Lead acid, 55 kW | [26] |
Unit | Value | |
---|---|---|
Vessel Type | - | RO-Pax ferry |
Length Overall | m | 42 |
Breadth Extreme | m | 9 |
Gross Tonnage | t | 280 |
Propulsion engines | kW | 2 × 206 |
Auxiliary engines | kW | 2 × 28 |
Power system volume | m3 | 15.5 |
Power system weight | kg | 7185 |
Parameters | Unit | Value | Ref. |
---|---|---|---|
€/kWh | 0.3 | [64,65] | |
€/kWh | 818 | [5,66] | |
€/kW | 3750 | [64] | |
% | 20 | Assumed | |
µV/kW | 0.0441 | [37,55,56,57,58] | |
% | 10 | Assumed | |
µV/cycle | 23.91 | [37,55,56,57,58] | |
min | 1 | Assumed | |
% | 90 | Assumed | |
% | 10 | Assumed | |
A/cm2 | 600 | [67] | |
A/cm2 | 75 | [67] | |
µVcm2/A | 0.243 | [37,55,56,57,58] | |
µV | 0.159 | [37,55,56,57,58] | |
kWcm2/A | 0.354 | [57,58,67] | |
kW | 3.837 | [57,58,67] | |
kWcm2/A | 0.159 | [57,58,67] | |
kWcm2/A | 7.251 | [57,58,67] | |
1/(KAh2) | [61,62,63] | ||
1/(KAh) | [61,62,63] | ||
1/K | 0.033 | [61,62,63] | |
1/(KAh2) | [61,62,63] | ||
1/(KAh) | −0.48 | [61,62,63] | |
1/K | −8.885 | [61,62,63] | |
% | 20 | [63] | |
% | 90 | [63] | |
m3/kWh | 0.0091 | [5] | |
m3/kW | 0.0312 | [64] | |
m3/kgH2 | 0.025 | [64,65] | |
m3 | 15.5 | Assumed | |
V | 0.19 | Assumed | |
kg/kWh | 8 | [5] | |
kg/kW | 20 | [64] | |
kg/kgH2 | 2.5 | [64,65] | |
kg | 7185 | Assumed |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dall’Armi, C.; Pivetta, D.; Taccani, R. Health-Conscious Optimization of Long-Term Operation for Hybrid PEMFC Ship Propulsion Systems. Energies 2021, 14, 3813. https://doi.org/10.3390/en14133813
Dall’Armi C, Pivetta D, Taccani R. Health-Conscious Optimization of Long-Term Operation for Hybrid PEMFC Ship Propulsion Systems. Energies. 2021; 14(13):3813. https://doi.org/10.3390/en14133813
Chicago/Turabian StyleDall’Armi, Chiara, Davide Pivetta, and Rodolfo Taccani. 2021. "Health-Conscious Optimization of Long-Term Operation for Hybrid PEMFC Ship Propulsion Systems" Energies 14, no. 13: 3813. https://doi.org/10.3390/en14133813
APA StyleDall’Armi, C., Pivetta, D., & Taccani, R. (2021). Health-Conscious Optimization of Long-Term Operation for Hybrid PEMFC Ship Propulsion Systems. Energies, 14(13), 3813. https://doi.org/10.3390/en14133813