Global-Local Heat Demand Development for the Energy Transition Time Frame Up to 2050
Abstract
:1. Introduction
- In a high spatial resolution, for 145 regions globally;
- For the whole energy transition time frame from 2020 to 2050 in 5-year steps;
- For different heat demand types, such as industrial heat demand (IHD), domestic hot water demand (DHW), biomass for cooking demand (BCH) and space heat demand (SHD);
- Including heat demand profiles for IHD, DHW and SHD for 145 mesoscale regions.
2. Literature Review
3. Data and Methods
3.1. General Heat and Input Data
3.2. Determination of Heat Demand Data for the Base Year
- Calculation of industrial, domestic hot water and biomass for cooking heat demand is based on respective input data. The data basis is the total heat consumption of the major regions as of [22].
- Calculation of space heating demand is based on the respective input data. The data basis is the interim result for the total heat of “other” sectors and the deduction of domestic hot water and biomass for cooking demands.
- Fitting trendlines and derivation of future estimations.
3.2.1. Industrial Heat Demand
3.2.2. Domestic Hot Water Demand
3.2.3. Biomass for Cooking Demand
3.2.4. Space Heating Demand
3.3. Projection of Future Demands
3.3.1. Projection of Industrial Heat Demand
3.3.2. Projection of Domestic Hot Water Demand
3.3.3. Biomass for Cooking Phase-Out Path
- Delayed ramp-up of the biomass-based cooking between 2012 and 2020, so the total CHbio even increases in the first years of the studied time period in countries with strong population growth. This phenomenon can be observed especially in sub-Saharan Africa in recent years;
- Long and almost linear phase-out period;
- After ξ(t) becomes less than 0.5, a turning point is created to follow the shape of a logistic curve;
- Compared to default sigmoid curves such as the Gompertz or the logistic function, this adjusted function approaches the value 0 in 2050 more steeply instead of reaching very low values already before 2045.
3.3.4. Projection of Space Heating Demand
3.4. Aggregation and Disaggregation to 145 Mesoscale Regions
3.5. Calculating Hourly Heat Demand Profiles
- Not all the industry runs in 24/7 operation. Some industry applying a two-shift system will require IHD only during the daytime, even if is only a minor share;
- As for all heat demand types, seasonality will most certainly play a role.
- The seasonality factor ϑT,r,d is adjusted to a 30-day running average, as it is assumed that the industrial heat demand depends on rather general changes of seasonality than daily or weekly fluctuations of the temperature;
- The exemplary week is a representative week, calculated as the average of the 52 weeks of the year.
4. Results
4.1. Base Data of the Year 2012
4.2. Heat Demand Trendlines
4.3. Future Heat Demand Projections
4.3.1. Major Regions Heat Demand Projection
4.3.2. Heat Demand Projection for Regions
4.4. Heat Demand Profiles
5. Discussion
5.1. Global Heat Demand
5.2. Country-Level Validation
5.3. Outlook for Improvements
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviations and Symbols | |
A | Set of all countries in Africa incl. North Africa |
Aav | Set of countries in Africa with available biomass data |
BL | Baseload |
CH | Cooking heat consumption |
BCH | Biomass for cooking heat demand |
CAGR | Compound annual growth rate |
CO2 | Carbon dioxide |
DHW | Domestic hot water demand |
Eh | Heat energy of sector |
ηBE | Building efficiency factor |
ηCS | Cookstove efficiency |
ηIE | Industry efficiency factor |
Building efficiency improvement per year | |
Efficiency improvement per year of industry sector | |
EU | European Union |
GDP | Gross domestic product |
GPr | Set of countries in a Greenpeace region |
HD | Total heat demand |
HDH | Heat degree hour |
HDH’ | Adapted heat degree hour |
ICS | Improved cookstove |
IDBL | Intraday baseload |
IDL | Intraday load |
idx | index of intraday baseload reference value in daily profile |
IEA | International Energy Agency |
IHD | Industrial heat demand |
IHD′ | Industrial heat demand profile adapted to seasonality |
IPCC | Intergovernmental Panel on Climate Change |
GHG | Greenhouse gases |
λ | Form parameter |
LPG | Liquefied petroleum gas |
Natel | National electricity profile |
Nat′peak | First derivative of the baseload reduced national electricity profile |
Nc | Set of nodes of a specific country |
NG | Natural gas |
Nr | Set of nodes of a specific mesoscale region |
OHD | Other heat demand |
p | share |
pop | population |
pph | people per household |
RES | Renewable Energy Sources |
Resel | Residential electricity profile |
Res′el | Residential electricity profile adapted to seasonality |
RFA | Residential floor area |
Sh | Set of heat sources |
SHD | Space heating demand |
T | Temperature |
τ | Seasonality impact scaling exponent |
TBMC | Traditional biomass cookstove |
TCS | Traditional cookstove |
ϑ | Seasonality factor |
VAI | Value added by industry |
w | weight |
WEO | World Energy Outlook |
ξ | Phase-out function for biomass-based cooking |
Subscripts | |
a | annual |
Africa | with regard to Africa |
av | available |
ave | average |
bio | biomass |
c | country |
cap | per capita |
co | with regard to Colombia |
d | day, daily |
Δt | time step |
GPr | Greenpeace region |
h | hour, hourly |
hlim | heating limit |
ind | industry sector |
IPPCr | IPPC region |
min | minimum |
n | node |
norm | normalised |
other | other sectors |
r | mesoscale region |
RCS | Cookstove efficiency region |
rel | relative |
res | residential sector |
rfa | per residential floor area |
Σ | summed up value |
SHD | of total space heating demand |
src | heat source |
TL | trendline |
tot | total |
y | year |
Appendix A
Supporting Figures
References
- United Nations Framework Convention on Climate Change (UNFCC). Report of the Conference of the Parties on its Twenty-First Session FCCC/CP/2015/10/Add.1; UNFCC: Paris, France, 2015. [Google Scholar]
- Ürge-Vorsatz, D.; Petrichenko, K.; Staniec, M.; Eom, J. Energy use in buildings in a long-term perspective. Curr. Opin. Environ. Sustain. 2013, 5, 141–151. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Clean and Efficient Heat for Industry; IEA: Paris, France, 2018; Available online: https://www.iea.org/commentaries/clean-and-efficient-heat-for-industry (accessed on 20 January 2021).
- International Renewable Energy Agency (IRENA). Global Energy Transformation: A Roadmap to 2050, 2019th ed.; IRENA: Abu Dhabi, United Arab Emirates, 2019; ISBN 978-92-9260-121-8. [Google Scholar]
- Renewable Energy Policy Network for the 21st Century (REN21). Renewables Global Futures Report—Great Debates towards 100% Renewable Energy; REN21: Paris, France, 2017; ISBN 9783981810745. [Google Scholar]
- International Energy Agency (IEA). Renewables 2019—Analysis and Forecast to 2024; IEA: Paris, France, 2019; ISBN 978-92-64-36998-6. [Google Scholar]
- Kavvadias, K.; Jimenez-Navarro, J.; Thomassen, G. Decarbonising the EU Heating Sector—Integration of the Power and Heating Sector, EUR 29772 EN, JRC114758. Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-08386-3. [Google Scholar]
- Thomaßen, G.; Kavvadias, K.; Jiménez Navarro, J.P. The decarbonisation of the EU heating sector through electrification: A parametric analysis. Energy Policy 2021, 148, 111929. [Google Scholar] [CrossRef]
- Arpagaus, C.; Bless, F.; Uhlmann, M.; Schiffmann, J.; Bertsch, S.S. High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials. Energy 2018, 152, 985–1010. [Google Scholar] [CrossRef] [Green Version]
- Schoeneberger, C.A.; McMillan, C.A.; Kurup, P.; Akar, S.; Margolis, R.; Masanet, E. Solar for industrial process heat: A review of technologies, analysis approaches, and potential applications in the United States. Energy 2020, 206, 118083. [Google Scholar] [CrossRef]
- Farjana, S.H.; Huda, N.; Mahmud, M.A.P.; Saidur, R. Solar process heat in industrial systems—A global review. Renew. Sustain. Energy Rev. 2018, 82, 2270–2286. [Google Scholar] [CrossRef] [Green Version]
- Fischer, D.; Madani, H. On heat pumps in smart grids: A review. Renew. Sustain. Energy Rev. 2017, 70, 342–357. [Google Scholar] [CrossRef] [Green Version]
- Lund, H.; Østergaard, P.A.; Nielsen, T.B.; Werner, S.; Thorsen, J.E.; Gudmundsson, O.; Arabkoohsar, A.; Mathiesen, B.V. Perspectives on fourth and fifth generation district heating. Energy 2021, 227, 120520. [Google Scholar] [CrossRef]
- David, A.; Mathiesen, B.V.; Averfalk, H.; Werner, S.; Lund, H. Heat Roadmap Europe: Large-Scale Electric Heat Pumps in District Heating Systems. Energies 2017, 10, 578. [Google Scholar] [CrossRef] [Green Version]
- Keiner, D.; Ram, M.; Barbosa, L.D.S.N.S.; Bogdanov, D.; Breyer, C. Cost optimal self-consumption of PV prosumers with stationary batteries, heat pumps, thermal energy storage and electric vehicles across the world up to 2050. Sol. Energy 2019, 185, 406–423. [Google Scholar] [CrossRef]
- World Future Council; Hivos. Beyond Fire: How to Achieve Sustainable Cooking; The Hague: Hamburg, Germany, 2016. [Google Scholar]
- World Future Council; Hivos. Beyond Fire: How to Achieve Electric Cooking; The Hague: Hamburg, Germany, 2019. [Google Scholar]
- International Energy Agency (IEA). World Energy Outlook 2015; IEA: Paris, France, 2015; ISBN 978-92-64-24366-8. [Google Scholar]
- International Energy Agency (IEA). World Energy Outlook 2020; IEA: Paris, France, 2020; ISBN 978-92-64-44923-7. [Google Scholar]
- International Energy Agency (IEA). Data and Statistics; IEA: Paris, France, 2021; Available online: https://www.iea.org/data-and-statistics/data-tables (accessed on 20 January 2021).
- Teske, S.; Pregger, T.; Simon, S.; Naegler, T. High renewable energy penetration scenarios and their implications for urban energy and transport systems. Curr. Opin. Environ. Sustain. 2018, 30, 89–102. [Google Scholar] [CrossRef]
- Prentiss, M. Energy Revolution; Harvard University Press: Hamburg, Germany; Brussels, Belgium, 2015; ISBN 9780674736139. [Google Scholar]
- Sachs, J.; Moya, D.; Giarola, S.; Hawkes, A. Clustered spatially and temporally resolved global heat and cooling energy demand in the residential sector. Appl. Energy 2019, 250, 48–62. [Google Scholar] [CrossRef]
- Isaac, M.; van Vuuren, D.P. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy 2009, 37, 507–521. [Google Scholar] [CrossRef]
- Shell International, B.V. Sky Scenario—Meeting the Goals of the Paris Agreement; Shell International B.V.: Den Haag, The Netherlands, 2018. [Google Scholar]
- Jacobson, M.Z.; Delucchi, M.A.; Cameron, M.A.; Coughlin, S.J.; Hay, C.A.; Manogaran, I.P.; Shu, Y.; von Krauland, A.-K. Impacts of Green New Deal Energy Plans on Grid Stability, Costs, Jobs, Health, and Climate in 143 Countries. One Earth 2019, 1, 449–463. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Net Zero by 2050; IEA: Paris, France, 2021. [Google Scholar]
- DNV. Energy Transition Outlook 2020; DNV: Høvik, Norway, 2019. [Google Scholar]
- Löffler, K.; Hainsch, K.; Burandt, T.; Oei, P.-Y.; Kemfert, C.; von Hirschhausen, C. Designing a Model for the Global Energy System—GENeSYS-MOD: An Application of the Open-Source Energy Modeling System (OSeMOSYS). Energies 2017, 10, 1468. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- U.S. Department of Energy. International Energy Outlook 2019; U.S. Department of Energy: Washington, DC, USA, 2019. [Google Scholar]
- World Wildlife Fund (WWF). The Energy Report 100% Renewable Energy by 2050; WWF: Washington, DC, USA, 2011; ISBN 978-2-940443-26-0. [Google Scholar]
- Deng, Y.Y.; Blok, K.; van der Leun, K. Transition to a fully sustainable global energy system. Energy Strateg. Rev. 2012, 1, 109–121. [Google Scholar] [CrossRef]
- Achieving the Paris Climate Agreement Goals. Teske, S., Ed.; Springer International Publishing: Cham, Switerland, 2019; ISBN 978-3-030-05842-5.
- Bogdanov, D.; Ram, M.; Aghahosseini, A.; Gulagi, A.; Oyewo, A.S.; Child, M.; Caldera, U.; Sadovskaia, K.; Farfan, J.; De Souza Noel Simas Barbosa, L.; et al. Low-cost renewable electricity as the key driver of the global energy transition towards sustainability. Energy 2021, 227, 120467. [Google Scholar] [CrossRef]
- Ram, M.; Bogdanov, D.; Aghahosseini, A.; Gulagi, A.; Oyewo, A.; Child, M.; Caldera, U.; Sadovskaia, K.; Farfan, J.; Barbosa, L.; et al. Global Energy System based on 100% Renewable Energy—Power, Heat, Transport and Desalination Sectors. Lappeenranta University of Technology and Energy Watch Group: Lappeenranta, Finland; Berlin, Germany, 2019; ISBN 978-952-335-339-8. [Google Scholar]
- Toktarova, A.; Gruber, L.; Hlusiak, M.; Bogdanov, D.; Breyer, C. Long term load projection in high resolution for all countries globally. Int. J. Electr. Power Energy Syst. 2019, 111, 160–181. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs World Population Prospects 2019; Washington, DC, USA. 2019. Available online: https://population.un.org/wpp/Download/Standard/Population/ (accessed on 23 June 2020).
- Bogdanov, D.; Farfan, J.; Sadovskaia, K.; Aghahosseini, A.; Child, M.; Gulagi, A.; Oyewo, A.S.; de Souza Noel Simas Barbosa, L.; Breyer, C. Radical transformation pathway towards sustainable electricity via evolutionary steps. Nat. Commun. 2019, 10, 1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naegler, T.; Simon, S.; Klein, M.; Gils, H.C. Quantification of the European industrial heat demand by branch and temperature level. Int. J. Energy Res. 2015, 39, 2019–2030. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, E.; Arce, L.; Salom, J. A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis. Renew. Sustain. Energy Rev. 2018, 81, 1530–1547. [Google Scholar] [CrossRef]
- Xue, P.; Hong, T.; Dong, B.; Mak, C. A preliminary investigation of water usage behavior in single-family homes. Build. Simul. 2017, 10, 949–962. [Google Scholar] [CrossRef] [Green Version]
- Bich-Ngoc, N.; Teller, J. A Review of Residential Water Consumption Determinants. In Proceedings of the Computational Science and Its Applications—ICCSA 2018; Gervasi, O., Murgante, B., Misra, S., Stankova, E., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Ryu, Y., Eds.; Springer International Publishing: Cham, Switerland, 2018; pp. 685–696. [Google Scholar]
- Ürge-Vorsatz, D.; Cabeza, L.F.; Serrano, S.; Barreneche, C.; Petrichenko, K. Heating and cooling energy trends and drivers in buildings. Renew. Sustain. Energy Rev. 2015, 41, 85–98. [Google Scholar] [CrossRef] [Green Version]
- International Institute for Applied Systems Analysis MESSAGE Model Regions; Laxenburg. 2013. Available online: https://iiasa.ac.at/web/home/research/researchPrograms/Energy/MESSAGE-model-regions.en.html (accessed on 15 January 2021).
- United Nations Statistics Division Occupied Housing Units by Type of Housing Unit, Number of Rooms and Urban/Rural Location; Washington, DC, USA. 2020. Available online: http://data.un.org/Data.aspx?d=POP&f=tableCode%3A278 (accessed on 15 January 2021).
- Alioth Finance “Inflation Calculator.” U.S. Official Inflation Data. Available online: https://www.officialdata.org/ (accessed on 28 January 2021).
- Dagnachew, A.G.; Hof, A.F.; Lucas, P.L.; van Vuuren, D.P. Scenario analysis for promoting clean cooking in Sub-Saharan Africa: Costs and benefits. Energy 2020, 192, 116641. [Google Scholar] [CrossRef]
- Overend, R.P. Biomass Energy Heat Provision for Cooking and Heating in Developing Countries. In Energy from Organic Materials (Biomass): A Volume in the Encyclopedia of Sustainability Science and Technology, 2nd ed.; Kaltschmitt, M., Ed.; Springer: New York, NY, USA, 2019; pp. 513–531. ISBN 978-1-4939-7813-7. [Google Scholar]
- Galimova, T.; Ram, M.; Breyer, C. Air Pollution Mitigation during the Global Energy Transition towards 100% Renewable Energy Systems by 2050. 2021. Submitted.
- Rosillo-Calle, F. A review of biomass energy—Shortcomings and concerns. J. Chem. Technol. Biotechnol. 2016, 91, 1933–1945. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Guidelines on Data Collection for National Statistics on Forest Products; FAO: Rome, Italy, 2018. [Google Scholar]
- United Nations Statistic Division—Department of Economic and Social Affairs. Energy Balances 2012; United Nations Statistic Division—Department of Economic and Social Affairs: New York, NY, USA, 2015; ISBN 9789210613705. [Google Scholar]
- United Nations Statistic Division—Department of Economic and Social Affairs. Energy Balances 2013; United Nations Statistic Division—Department of Economic and Social Affairs: New York, NY, USA, 2015; ISBN 9789211616071. [Google Scholar]
- NITI Aayong. India Energy Security Scenarios 2047; Government of India: New Delhi, India, 2015. [Google Scholar]
- Mainali, B.; Pachauri, S.; Nagai, Y. Analyzing cooking fuel and stove choices in China till 2030. J. Renew. Sustain. Energy 2012, 4, 031805. [Google Scholar] [CrossRef]
- FS-UNEP Collaborating Centre; UNEP Finance Initiative. Financing Household Clean Energy Energy Solutions—Mongolia; UNEP: Frankfurt, Germany; Geneva, Switzerland, 2018. [Google Scholar]
- Forest Research Typical Caloric Values of Fuels. Available online: https://www.forestresearch.gov.uk/tools-and-resources/biomass-energy-resources/reference-biomass/facts-figures/typical-calorific-values-of-fuels/ (accessed on 10 March 2021).
- Kim, I.-S.; Lee, J.-Y.; Kim, Y.-P. Energy Usage and Emissions of Air Pollutants in North Korea. J. Korean Soc. Atmos. Environ. 2011, 27, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Pachauri, S.; Rao, N.D.; Cameron, C. Outlook for modern cooking energy access in Central America. PLoS ONE 2018, 13, e0197974. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Medrano, M.; García-Bustamante, C.; Berrueta, V.M.; Martínez-Bravo, R.; Ruiz-García, V.M.; Ghilardi, A.; Masera, O. Promoting LPG, clean woodburning cookstoves or both? Climate change mitigation implications of integrated household energy transition scenarios in rural Mexico. Environ. Res. Lett. 2018, 13, 115004. [Google Scholar] [CrossRef]
- International Renewable Energy Agency (IRENA). Renewable Energy Prospects: Mexico, REmap 2030 Analysis; IRENA: Abu Dhabi, United Arab Emirates, 2015. [Google Scholar]
- Lopez, G.; Aghahosseini, A.; Bogdanov, D.; Mensah, T.N.O.; Ghorbani, N.; Caldera, U.; Prada Rivero, A.; Kissel, J.; Breyer, C. Pathway to a fully sustainable energy system for Bolivia across power, heat, and transport sectors by 2050. J. Clean. Prod. 2021, 293, 126195. [Google Scholar] [CrossRef]
- Coelho, S.; Lecocq, F.; Cortez, C.; Barbier, C.; Tudeschini, L.G. Fuel Wood Consumption in Brazilian Residential Sector, Energy Consumption in Households and Carbon Footprint of Development in Selected Brazilian Regions, Comparing Brazil and France. In Proceedings of the 22nd European Biomass Conference and Exhibition, Hamburg, Germany, 23–26 June 2014; pp. 1475–1479. [Google Scholar]
- Osorio-Aravena, J.C.; Aghahosseini, A.; Bogdanov, D.; Caldera, U.; Ghorbani, N.; Mensah, T.N.O.; Khalili, S.; Muñoz-Cerón, E.; Breyer, C. The impact of renewable energy and sector coupling on the pathway towards a sustainable ener-gy system in Chile. 2021. Submitted.
- Wood, S.; Rowena, C. National Energy Efficiency Monitoring Report of Guyana, Project Documents, (LC/TS.2020/27); UN: Santiago, CA, USA, 2020. [Google Scholar]
- Gonzalez-Salazar, M.A.; Venturini, M.; Poganietz, W.-R.; Finkenrath, M.; Kirsten, T.; Acevedo, H. Bioenergy Technology Roadmap for Colombia; Universitá degli Studi di Ferrara: Ferrara, Italy, 2014; ISBN 9289401702. [Google Scholar]
- Organización Latinoamericana de Energía sieLAC—Energy Information System of Latin America and the Caribbean; San Carlos, CA, USA. 2020. Available online: http://sier.olade.org/default.aspx (accessed on 5 March 2021).
- Wang, X.; Franco, J.; Masera, O.R.; Troncoso, K.; Rivera, M.X. What Have We Learned about Household Biomass Cooking in Central America? World Bank: Washington, DC, USA, 2013. [Google Scholar]
- SE4ALL Rapid Assessment Gap Analysis Uruguay. Available online: https://www.seforall.org/sites/default/files/Uruguay_RAGA_EN_Released.pdf (accessed on 5 March 2021).
- Lapillone, B. Interpretation of household indicators. Reunión Técnica de Trabajo del Proyecto BIEE. 2014. Available online: https://www.slideserve.com/chin/interpretation-of-household-indicators (accessed on 15 March 2021).
- Hof, A.; Dagnachew, A.G.; Lucas, P.L.; van Vuuren, D.P. Towards Universal Access to Clean Cooking Solutions in Sub-Saharan Africa; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2019. [Google Scholar]
- World Bioenergy Association. Clean and Efficient Bioenergy Cookstoves; WBA Fact Sheet: Stockholm, Sweden, 2016; Available online: http://www.worldbioenergy.org/uploads/Factsheet%20-%20Cookstoves.pdf (accessed on 25 March 2021).
- Stackhouse, P.W.; Whitlock, C.H. Surface Meteorology and Solar Energy (SSE) Release 6.0, NASA SSE 6.0; Langley. 2008. Available online: https://searchworks.stanford.edu/catalog?q=%22NASA+Langley+Atmospheric+Sciences+Data+Center%22&search_field=search_author (accessed on 24 May 2021).
- Stackhouse, P.W.; Whitlock, C.H. Surface Meteorology and Solar Energy (SSE) Release 6.0 Methodology, NASA SSE 6.0; Langley. 2009. Available online: https://power.larc.nasa.gov/docs/methodology/ (accessed on 24 May 2021).
- WorldPop (School of Geography and Environmental Science—University of Southampton; Department of Geography and Geosciences—University of Louisville; Departement de Geographie—Universite de Namur; Center for International Earth Science Information Ne Population Counts; Southampton. 2018. Available online: https://dx.doi.org/10.5258/SOTON/WP00647 (accessed on 23 April 2021).
- The World Bank Industry (Including Construction), Value Added (% of GDP); Washington, DC, USA, 2021. Available online: https://data.worldbank.org/indicator/NV.IND.TOTL.ZS (accessed on 31 March 2021).
- Elfring, T. The Main Features and Underlying Causes of the Shift to Services. Serv. Ind. J. 1989, 9, 337–356. [Google Scholar] [CrossRef]
- European Environment Agency Progress on Energy Efficiency in Europe; Copenhagen. 2021. Available online: https://www.eea.europa.eu/data-and-maps/indicators/progress-on-energy-efficiency-in-europe-3/assessment (accessed on 23 April 2021).
- International Energy Agency (IEA) SDG7: Data and Projections; Energy Intensity; Paris. 2021. Available online: https://www.iea.org/reports/sdg7-data-and-projections/energy-intensity (accessed on 6 April 2021).
- Zhang, X.-P.; Cheng, X.-M.; Yuan, J.-H.; Gao, X.-J. Total-factor energy efficiency in developing countries. Energy Policy 2011, 39, 644–650. [Google Scholar] [CrossRef]
- Malla, S.; Timilsina, G.R. Household Cooking Fuel Choice and Adoption of Improved Cookstoves in Developing Countries A Review; Policy Research Working Paper; The World Bank: Washington, DC, USA, 2014. [Google Scholar]
- Goldemberg, J.; Martinez-Gomez, J.; Sagar, A.; Smith, K.R. Household air pollution, health, and climate change: Cleaning the air. Environ. Res. Lett. 2018, 13, 030201. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- The World Bank Climate Data API. Washington, DC, USA. 2021. Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/902061-climate-data-api (accessed on 13 April 2021).
- Verbeke, S.; Audenaert, A. Thermal inertia in buildings: A review of impacts across climate and building use. Renew. Sustain. Energy Rev. 2018, 82, 2300–2318. [Google Scholar] [CrossRef]
- Ahmed, K.; Pylsy, P.; Kurnitski, J. Monthly domestic hot water profiles for energy calculation in Finnish apartment buildings. Energy Build. 2015, 97, 77–85. [Google Scholar] [CrossRef]
- Möller, B.; Wiechers, E.; Persson, U.; Grundahl, L.; Lund, R.S.; Mathiesen, B.V. Heat Roadmap Europe: Towards EU-Wide, local heat supply strategies. Energy 2019, 177, 554–564. [Google Scholar] [CrossRef]
- Guttikunda, S.K.; Lodoysamba, S.; Bulgansaikhan, B.; Dashdondog, B. Particulate pollution in Ulaanbaatar, Mongolia. Air Qual. Atmos. Health 2013, 6, 589–601. [Google Scholar] [CrossRef]
- Zeyen, E.; Hagenmeyer, V.; Brown, T. Mitigating heat demand peaks in buildings in a highly renewable European energy system. Energy 2021, 231, 120784. [Google Scholar] [CrossRef]
- Khalili, S.; Rantanen, E.; Bogdanov, D.; Breyer, C. Global Transportation Demand Development with Impacts on the Energy Demand and Greenhouse Gas Emissions in a Climate-Constrained World. Energies 2019, 12, 3870. [Google Scholar] [CrossRef] [Green Version]
- Connolly, D. Heat Roadmap Europe: Quantitative comparison between the electricity, heating, and cooling sectors for different European countries. Energy 2017, 139, 580–593. [Google Scholar] [CrossRef]
- European Commission (EC). Mapping and Analyses of the Current and Future (2020–2030) Heating/Cooling Fuel Deployment (Fossil/Renewables). EC: Brussels, Belgium, 2016. [Google Scholar]
- Rehfeldt, M.; Fleiter, T.; Toro, F. A bottom-up estimation of the heating and cooling demand in European industry. Energy Effic. 2018, 11, 1057–1082. [Google Scholar] [CrossRef]
- European Commission (EC). Eurostat Energy Balance Guide; EC: Brussels, Belgium; Luxembourg, 2019. [Google Scholar]
- Bogdanov, D.; Gulagi, A.; Fasihi, M.; Breyer, C. Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination. Appl. Energy 2021, 283, 116273. [Google Scholar] [CrossRef]
- Kumar, L.; Hasanuzzaman, M.; Rahim, N.A. Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: A review. Energy Convers. Manag. 2019, 195, 885–908. [Google Scholar] [CrossRef]
- Lauterbach, C.; Schmitt, B.; Jordan, U.; Vajen, K. The potential of solar heat for industrial processes in Germany. Renew. Sustain. Energy Rev. 2012, 16, 5121–5130. [Google Scholar] [CrossRef]
Global Heat Sector Scenarios | Final Energy Demand of Heat Sector in TWh/a | Final Energy Fuel Shares of Heat Sector in 2050 [%] | RE Share in 2050 [%] | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source | Publ. Year | 2015 | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | Fossil Fuels | Bioenergy | Synthetic Fuels | Electricity | Solar Thermal | Geothermal | |
WWF [32]/Deng et al. [33] | 2011, 2012 | 33,452 | 36,140 | 34,286 | 30,561 | 26,410 | 23,074 | 18,684 | 17,848 | 15.0 | 46.0 | 0 | 10.0 | 26.0 | 3.0 | 100 |
Greenpeace [22]/Teske et al. [21] | 2015, 2018 | - | 45,228 | 45,834 | 46,121 | - | 45,499 | - | 43,490 | 0 | 27.0 | 13.0 | 24.0 | 23.0 | 13.0 | 100 |
Teske—2.0 °C [34] | 2019 | 41,667 | - | 44,444 | 45,556 | - | 43,889 | - | 42,222 | 0 | 22.6 | 8.8 | 24.1 | 18.2 | 26.3 | 100 |
Teske—1.5 °C [34] | 2019 | 41,667 | - | 41,944 | 40,556 | - | 39,722 | - | 40,000 | 0 | 21.1 | 12.5 | 27.5 | 18.3 | 20.6 | 100 |
Löffler et al. [29] | 2017 | 51,944 | 49,167 | 49,167 | 49,444 | 49,444 | 48,889 | 48,889 | 50,278 | 0 | 46.0 | 13.0 | 39.0 | 2.0 | 0 | 100 |
Jacobson et al. [26] | 2019 | - | - | - | - | - | - | - | 73,519 | 0 | 0 | 0 | 100 | 0 | 0 | 100 |
Bogdanov et al. [35]/Ram et al. [36] | 2019, 2021 | 38,620 | 40,559 | 42,070 | 44,215 | 46,202 | 48,329 | 50,389 | 52,502 | 0 | 12.0 | 12.0 | 70.0 | 5.0 | 1.0 | 100 |
DNV [28] | 2019 | 19,097 | 20,139 | 20,658 | 20,833 | 20,936 | 20,556 | 20,139 | 19,444 | 52.5 | 5.5 | 4.0 | 35.8 | 2.2 | 0 | 78.0 |
IEA—WEO—SDS [19] | 2020 | 47,764 | - | 45,380 | 39,682 | - | 35,611 | - | - | 71.6 | 19.3 | 0 | n/a | 3.00 | 6.1 | 71.5 |
IEA—WEO—StPS [19] | 2020 | 47,764 | - | 49,742 | 51,207 | - | 53,731 | - | - | 74.2 | 22.3 | 0 | n/a | 1.1 | 2.3 | 46.9 |
IEA—WEO—NZE2050 [27] | 2021 | - | 52, 264 | - | 44, 758 | - | 38, 642 | - | 33, 360 | 37.9 | 24.5 | 5.2 | 21.3 | 3.7 | 7.5 | 87.6 |
IPCC—SR1.5—MESSAGE v.3—GEA_Eff_1p5C [30] | 2018 | - | 50,673 | - | 43,779 | - | 40,775 | - | 37,484 | 60.3 | 39.7 | 0 | n/a | n/a | n/a | 91.6 |
IPCC—SR1.5—IMAGE 3.0.1—IMA15-RenElec [30] | 2018 | 53,071 | 47,391 | 42,442 | 40,598 | 38,397 | 36,392 | 33,932 | 30,763 | 63.5 | 36 | 0.5 | n/a | n/a | n/a | 71.6 |
IPCC—SR1.5—REMIND-MAgPIE 1.7–3.0—PEP_1p5C_FNZ [30] | 2018 | 64,532 | 66,986 | 66,583 | 65,663 | 60,238 | 54,789 | 50,515 | 47,611 | 76.2 | 14.6 | 9.2 | n/a | n/a | n/a | 88.4 |
Shell—Sky [25] | 2018 | 49,656 | 51,272 | 52,278 | 51,061 | 49,308 | 47,228 | 45,444 | 43,656 | 48.6 | 19.5 | 3.4 | 23.8 | 4.6 | 0 | 77.0 |
US DoE EIA—International Energy Outlook [31] | 2019 | 66,938 | 66,419 | 64,944 | 63,076 | 62,484 | 66,355 | 71,539 | 73,040 | 93.0 | 7.0 | 0 | n/a | n/a | n/a | 49.0 |
Region | Total Heat Demand [TWh] | Share of Industrial Heat Services [%] |
---|---|---|
OECD Europe | 5952 | 36 |
OECD North America | 5542 | 45 |
OECD Asia/Oceania | 2104 | 52 |
East Europe/Eurasia | 4928 | 43 |
China | 10,811 | 58 |
India | 3029 | 41 |
Other Asia | 2876 | 42 |
Latin America | 2080 | 63 |
Africa | 2043 | 16 |
Middle East | 1780 | 64 |
Global | 41,144 | 43 |
Region Short | Region Long | DHWrfa,IPPCr [kWh/m2] |
---|---|---|
AFR | Sub-Saharan Africa | 36.6 |
CPA | Centrally planned Asia and China | 36.4 |
EEU | Central and Eastern Europe | 32 |
FSU | Former Soviet Union | 80.2 |
LAC | Latin America and the Caribbean | 46.4 |
MEA | Middle East and North Africa | 40 |
NAM | North America | 17.5 |
PAO | Pacific OECD | 12.9 |
PAS | Other Pacific Asia | 9.9 |
SAS | South Asia | 24 |
WEU | Western Europe | 18.6 |
Region | Share TCS * in Total | Share ICS ** in Total | Share TCS in TBMC | Share ICS in TBMC | ηcs |
---|---|---|---|---|---|
Latin America and the Caribbean | 17% | 1% | 94.0% | 6.0% | 13.0% |
Sub-Saharan Africa | 74% | 8% | 90.2% | 9.8% | 13.8% |
South Asia | 61% | 7% | 90.0% | 10.0% | 13.8% |
East Asia | 9% | 38% | 19.1% | 80.9% | 26.6% |
Southeast Asia | 49% | 3% | 94.2 | 5.8% | 13.0% |
Demand Type | CAGR of Heat Demand [%] | ||||||
---|---|---|---|---|---|---|---|
2012–2020 | 2020–2025 | 2025–2030 | 2030–2035 | 2035–2040 | 2040–2045 | 2045–2050 | |
IHD | 1.6 | 2.3 | 1.9 | 1.3 | 1.0 | 0.6 | 0.2 |
SHD | 1.7 | 1.0 | 0.6 | 0.2 | −0.1 | −0.4 | −0.8 |
DHW | 3.5 | 3.0 | 2.6 | 2.1 | 1.6 | 1.3 | 0.9 |
BCH | −2.6 | −5.4 | −6.0 | −8.3 | −13.6 | −23.5 | −69.0 |
Total | 1.2 | 1.1 | 0.9 | 0.5 | 0.3 | 0.0 | −0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keiner, D.; Barbosa, L.D.S.N.S.; Bogdanov, D.; Aghahosseini, A.; Gulagi, A.; Oyewo, S.; Child, M.; Khalili, S.; Breyer, C. Global-Local Heat Demand Development for the Energy Transition Time Frame Up to 2050. Energies 2021, 14, 3814. https://doi.org/10.3390/en14133814
Keiner D, Barbosa LDSNS, Bogdanov D, Aghahosseini A, Gulagi A, Oyewo S, Child M, Khalili S, Breyer C. Global-Local Heat Demand Development for the Energy Transition Time Frame Up to 2050. Energies. 2021; 14(13):3814. https://doi.org/10.3390/en14133814
Chicago/Turabian StyleKeiner, Dominik, Larissa D.S.N.S. Barbosa, Dmitrii Bogdanov, Arman Aghahosseini, Ashish Gulagi, Solomon Oyewo, Michael Child, Siavash Khalili, and Christian Breyer. 2021. "Global-Local Heat Demand Development for the Energy Transition Time Frame Up to 2050" Energies 14, no. 13: 3814. https://doi.org/10.3390/en14133814
APA StyleKeiner, D., Barbosa, L. D. S. N. S., Bogdanov, D., Aghahosseini, A., Gulagi, A., Oyewo, S., Child, M., Khalili, S., & Breyer, C. (2021). Global-Local Heat Demand Development for the Energy Transition Time Frame Up to 2050. Energies, 14(13), 3814. https://doi.org/10.3390/en14133814