Energy Consumption and Its Structures in Food Production Systems of the Visegrad Group Countries Compared with EU-15 Countries
Abstract
:1. Introduction
2. Literature Review of Energy Consumption in Food Production Systems
3. Materials and Methods
- Agriculture supply. In this aggregate, indirect energy consumption in agriculture is measured, which comes from, among other things, the production of fertilizers and plant protection products, the manufacture of machinery and other materials, as well as the services used in agriculture.
- Agriculture. This involves the measurement of direct energy consumption in agriculture.
- Food industry. This deals with the measurement of direct energy consumption in food processing.
- The diversity threshold γ value is calculated.
- Matrix [vjp] is converted into matrix [wjp] so that
- The sum of the entries in each row of the matrix [wjp] is calculated.
- The largest value indicates the element (country) that is the least similar, at a certain γ value, to the largest number of other objects (countries). That object is eliminated by removing the corresponding row and column.
- The sums are recalculated in the rows of the reduced matrix, resulting in the elimination of another object.
- The elimination procedure is repeated until all components of matrix [wjp] are equal to 0. This is the way that Group 1, whose objects (countries) demonstrate the highest structural similarity, is created.
- The procedure is resumed from Stage 3 with the use of the set of objects eliminated during the creation of Group 1.
- The procedure is repeated until all objects are grouped.
4. Results and Discussion
4.1. Characteristics of Energy Consumption in the Food Production Systems of the Assessed Countries
4.2. Structures of Energy Consumption in Food Production Systems by the Source of Energy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
DE | AT | BE | DK | ES | FI | FR | GB | GR | IE | IT | NL | SE | PT | LU | CZ | PL | SK | HU | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DE | 0 | 0.12 | 0.19 | 0.10 | 0.15 | 0.23 | 0.07 | 0.20 | 0.26 | 0.21 | 0.14 | 0.40 | 0.35 | 0.31 | 0.25 | 0.15 | 0.29 | 0.20 | 0.12 |
AT | 0.12 | 0 | 0.11 | 0.16 | 0.05 | 0.24 | 0.08 | 0.25 | 0.21 | 0.14 | 0.09 | 0.45 | 0.33 | 0.20 | 0.16 | 0.26 | 0.33 | 0.30 | 0.19 |
BE | 0.19 | 0.11 | 0 | 0.17 | 0.07 | 0.14 | 0.13 | 0.29 | 0.19 | 0.14 | 0.16 | 0.49 | 0.25 | 0.21 | 0.16 | 0.28 | 0.30 | 0.29 | 0.23 |
DK | 0.10 | 0.16 | 0.17 | 0 | 0.15 | 0.17 | 0.14 | 0.22 | 0.29 | 0.19 | 0.17 | 0.38 | 0.30 | 0.33 | 0.16 | 0.12 | 0.29 | 0.22 | 0.18 |
ES | 0.15 | 0.05 | 0.07 | 0.15 | 0 | 0.20 | 0.10 | 0.26 | 0.19 | 0.10 | 0.10 | 0.46 | 0.31 | 0.19 | 0.13 | 0.26 | 0.31 | 0.30 | 0.20 |
FI | 0.23 | 0.24 | 0.14 | 0.17 | 0.20 | 0 | 0.20 | 0.35 | 0.22 | 0.27 | 0.29 | 0.49 | 0.21 | 0.27 | 0.21 | 0.29 | 0.27 | 0.27 | 0.29 |
FR | 0.07 | 0.08 | 0.13 | 0.14 | 0.10 | 0.20 | 0 | 0.20 | 0.25 | 0.18 | 0.11 | 0.40 | 0.32 | 0.27 | 0.21 | 0.20 | 0.32 | 0.23 | 0.13 |
GB | 0.20 | 0.25 | 0.29 | 0.22 | 0.26 | 0.35 | 0.20 | 0 | 0.44 | 0.33 | 0.21 | 0.20 | 0.34 | 0.43 | 0.31 | 0.18 | 0.47 | 0.19 | 0.09 |
GR | 0.26 | 0.21 | 0.19 | 0.29 | 0.19 | 0.22 | 0.25 | 0.44 | 0 | 0.16 | 0.29 | 0.64 | 0.39 | 0.07 | 0.31 | 0.40 | 0.28 | 0.44 | 0.35 |
IE | 0.21 | 0.14 | 0.14 | 0.19 | 0.10 | 0.27 | 0.18 | 0.33 | 0.16 | 0 | 0.14 | 0.48 | 0.40 | 0.18 | 0.15 | 0.28 | 0.34 | 0.39 | 0.28 |
IT | 0.14 | 0.09 | 0.16 | 0.17 | 0.10 | 0.29 | 0.11 | 0.21 | 0.29 | 0.14 | 0 | 0.37 | 0.38 | 0.27 | 0.13 | 0.20 | 0.36 | 0.28 | 0.18 |
NL | 0.40 | 0.45 | 0.49 | 0.38 | 0.46 | 0.49 | 0.40 | 0.20 | 0.64 | 0.48 | 0.37 | 0 | 0.51 | 0.64 | 0.36 | 0.32 | 0.66 | 0.29 | 0.29 |
SE | 0.35 | 0.33 | 0.25 | 0.30 | 0.31 | 0.21 | 0.32 | 0.34 | 0.39 | 0.40 | 0.38 | 0.51 | 0 | 0.39 | 0.33 | 0.33 | 0.45 | 0.29 | 0.31 |
PT | 0.31 | 0.20 | 0.21 | 0.33 | 0.19 | 0.27 | 0.27 | 0.43 | 0.07 | 0.18 | 0.27 | 0.64 | 0.39 | 0 | 0.30 | 0.44 | 0.33 | 0.50 | 0.39 |
LU | 0.25 | 0.16 | 0.16 | 0.16 | 0.13 | 0.21 | 0.21 | 0.31 | 0.31 | 0.15 | 0.13 | 0.36 | 0.33 | 0.30 | 0 | 0.26 | 0.38 | 0.36 | 0.31 |
CZ | 0.15 | 0.26 | 0.28 | 0.12 | 0.26 | 0.29 | 0.20 | 0.18 | 0.40 | 0.28 | 0.20 | 0.32 | 0.33 | 0.44 | 0.26 | 0 | 0.34 | 0.18 | 0.15 |
PL | 0.29 | 0.33 | 0.30 | 0.29 | 0.31 | 0.27 | 0.32 | 0.47 | 0.28 | 0.34 | 0.36 | 0.66 | 0.45 | 0.33 | 0.38 | 0.34 | 0 | 0.49 | 0.41 |
SK | 0.20 | 0.30 | 0.29 | 0.22 | 0.30 | 0.27 | 0.23 | 0.19 | 0.44 | 0.39 | 0.28 | 0.29 | 0.29 | 0.50 | 0.36 | 0.18 | 0.49 | 0 | 0.16 |
HU | 0.12 | 0.19 | 0.23 | 0.18 | 0.20 | 0.29 | 0.13 | 0.09 | 0.35 | 0.28 | 0.18 | 0.29 | 0.31 | 0.39 | 0.31 | 0.15 | 0.41 | 0.16 | 0 |
DE | AT | BE | DK | ES | FI | FR | GB | GR | IE | IT | NL | SE | PT | LU | CZ | PL | SK | HU | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DE | 0 | 0.23 | 0.27 | 0.09 | 0.18 | 0.32 | 0.08 | 0.21 | 0.19 | 0.24 | 0.12 | 0.29 | 0.45 | 0.16 | 0.18 | 0.11 | 0.28 | 0.11 | 0.10 |
AT | 0.23 | 0 | 0.21 | 0.16 | 0.28 | 0.27 | 0.15 | 0.12 | 0.25 | 0.39 | 0.20 | 0.29 | 0.21 | 0.24 | 0.25 | 0.16 | 0.43 | 0.14 | 0.16 |
BE | 0.27 | 0.21 | 0 | 0.24 | 0.35 | 0.41 | 0.23 | 0.10 | 0.36 | 0.46 | 0.29 | 0.10 | 0.37 | 0.32 | 0.34 | 0.23 | 0.50 | 0.17 | 0.20 |
DK | 0.09 | 0.16 | 0.24 | 0 | 0.16 | 0.23 | 0.08 | 0.18 | 0.14 | 0.26 | 0.09 | 0.30 | 0.35 | 0.12 | 0.15 | 0.11 | 0.27 | 0.11 | 0.12 |
ES | 0.18 | 0.28 | 0.35 | 0.16 | 0 | 0.33 | 0.16 | 0.29 | 0.18 | 0.12 | 0.11 | 0.40 | 0.41 | 0.07 | 0.15 | 0.24 | 0.32 | 0.22 | 0.21 |
FI | 0.32 | 0.27 | 0.41 | 0.23 | 0.33 | 0 | 0.27 | 0.32 | 0.17 | 0.38 | 0.31 | 0.45 | 0.25 | 0.30 | 0.22 | 0.26 | 0.39 | 0.27 | 0.28 |
FR | 0.08 | 0.15 | 0.23 | 0.08 | 0.16 | 0.27 | 0 | 0.15 | 0.17 | 0.25 | 0.12 | 0.32 | 0.37 | 0.15 | 0.18 | 0.08 | 0.30 | 0.08 | 0.05 |
GB | 0.21 | 0.12 | 0.10 | 0.18 | 0.29 | 0.32 | 0.15 | 0 | 0.27 | 0.40 | 0.23 | 0.19 | 0.31 | 0.26 | 0.29 | 0.15 | 0.44 | 0.10 | 0.12 |
GR | 0.19 | 0.25 | 0.36 | 0.14 | 0.18 | 0.17 | 0.17 | 0.27 | 0 | 0.24 | 0.17 | 0.43 | 0.30 | 0.15 | 0.18 | 0.19 | 0.28 | 0.21 | 0.21 |
IE | 0.24 | 0.39 | 0.46 | 0.26 | 0.12 | 0.38 | 0.25 | 0.40 | 0.24 | 0 | 0.19 | 0.48 | 0.49 | 0.16 | 0.25 | 0.32 | 0.34 | 0.31 | 0.29 |
IT | 0.12 | 0.20 | 0.29 | 0.09 | 0.11 | 0.31 | 0.12 | 0.23 | 0.17 | 0.19 | 0 | 0.30 | 0.40 | 0.05 | 0.11 | 0.20 | 0.35 | 0.18 | 0.17 |
NL | 0.29 | 0.29 | 0.10 | 0.30 | 0.40 | 0.45 | 0.32 | 0.19 | 0.43 | 0.48 | 0.30 | 0 | 0.41 | 0.34 | 0.33 | 0.32 | 0.56 | 0.26 | 0.29 |
SE | 0.45 | 0.21 | 0.37 | 0.35 | 0.41 | 0.25 | 0.37 | 0.31 | 0.30 | 0.49 | 0.40 | 0.41 | 0 | 0.39 | 0.32 | 0.37 | 0.52 | 0.35 | 0.37 |
PT | 0.16 | 0.24 | 0.32 | 0.12 | 0.07 | 0.30 | 0.15 | 0.26 | 0.15 | 0.16 | 0.05 | 0.34 | 0.39 | 0 | 0.10 | 0.23 | 0.33 | 0.20 | 0.20 |
LU | 0.18 | 0.25 | 0.34 | 0.15 | 0.15 | 0.22 | 0.18 | 0.29 | 0.18 | 0.25 | 0.11 | 0.33 | 0.32 | 0.10 | 0 | 0.26 | 0.35 | 0.23 | 0.23 |
CZ | 0.11 | 0.16 | 0.23 | 0.11 | 0.24 | 0.26 | 0.08 | 0.15 | 0.19 | 0.32 | 0.20 | 0.32 | 0.37 | 0.23 | 0.26 | 0 | 0.29 | 0.07 | 0.08 |
PL | 0.28 | 0.43 | 0.50 | 0.27 | 0.32 | 0.39 | 0.30 | 0.44 | 0.28 | 0.34 | 0.35 | 0.56 | 0.52 | 0.33 | 0.35 | 0.29 | 0 | 0.34 | 0.32 |
SK | 0.11 | 0.14 | 0.17 | 0.11 | 0.22 | 0.27 | 0.08 | 0.10 | 0.21 | 0.31 | 0.18 | 0.26 | 0.35 | 0.20 | 0.23 | 0.07 | 0.34 | 0 | 0.05 |
HU | 0.10 | 0.16 | 0.20 | 0.12 | 0.21 | 0.28 | 0.05 | 0.12 | 0.21 | 0.29 | 0.17 | 0.29 | 0.37 | 0.20 | 0.23 | 0.08 | 0.32 | 0.05 | 0 |
Specification | 2001–2002 | 2015–2016 | ||
---|---|---|---|---|
γ | Grouping Quality | γ | Grouping Quality | |
0.1722 | 18.54 | 0.1687 | 21.47 | |
γl = , | 0.1800 | 18.54 | 0.1700 | 21.47 |
. | 0.1900 | 18.35 | 0.1800 | 22.60 |
. | 0.2000 | 15.58 | 0.1900 | 17.95 |
. | 0.2100 | 15.58 | 0.2000 | 18.58 |
. | 0.2200 | 19.84 | 0.2100 | 18.43 |
. | 0.2300 | 19.84 | 0.2200 | 16.26 |
. | 0.2400 | 18.81 | 0.2300 | 13.05 |
. | 0.2500 | 18.81 | 0.2400 | 13.05 |
. | 0.2600 | 16.41 | 0.2500 | 14.25 |
0.2656 | 16.41 | 0.2567 | 14.90 |
References
- Koçak, E.; Şarkgüneşi, A. The renewable energy and economic growth nexus in Black Sea and Balkan countries. Energy Policy 2017, 100, 51–57. [Google Scholar] [CrossRef]
- Commission Staff Working Document. Analysis of Links between CAP Reform and Green Deal (SWD(2020)93 final) from 20 May 2020. Available online: https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/sustainability_and_natural_resources/documents/analysis-of-links-between-cap-and-green-deal_en.pdf (accessed on 20 April 2021).
- Malinovský, V. System Macromodel of Agricultural Building with Aim to Energy Consumption Minimization. Agris Line Pap. Econ. Inform. 2018, 9, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Council Directive 93/76/EEC of 13 September 1993 to Limit Carbon Dioxide Emissions by Improving Energy Efficiency (SAVE). Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A31993L0076 (accessed on 20 April 2021).
- Directive 2006/32/EC of the European Parliament and of the Council of 5 April 2006 on Energy End-Use Efficiency and Energy Services and Repealing Council Directive 93/76/EEC. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32006L0032 (accessed on 1 July 2021).
- Kiss, J. The impact of EU accession on the agricultural trade of the Visegrád countries. Hung. Stat. Rev. Spec. 2007, 11, 93–116. [Google Scholar]
- Communication from the Commission to the Council and the European Parliament–Renewable Energy Road Map–Renewable Energies in the 21st Century: Building a More Sustainable Future (COM/2006/0848 Final). Available online: https://eur-lex.europa.eu/legal-content/GA/TXT/?uri=celex%3A52006DC0848 (accessed on 20 April 2021).
- Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on Energy Efficiency, Amending Directives 2009/125/EC and 2010/30/EU and Repealing Directives 2004/8/EC and 2006/32/EC. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=celex%3A32012L0027 (accessed on 20 April 2021).
- Communication from the Commission to the European Parliament, the Council, THE European Economic and Social Committee, the Committee of the Regions and the European Investment Bank. A Framework Strategy for a Resilient Energy Union with a Forward-Looking Climate Change Policy (COM/2015/080 Final). Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52015DC0080 (accessed on 20 April 2021).
- Directive (EU) 2018/2002 of the European Parliament and of the Council of 11 December 2018 Amending Directive 2012/27/EU on Energy Efficiency. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2018.328.01.0210.01.ENG (accessed on 20 April 2021).
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018L2001 (accessed on 20 April 2021).
- Communication From the Commission to the European Parliament, the Council, The European Economic And Social Committee and the Committee of the Regions An EU-Wide Assessment of National Energy and Climate Plans Driving Forward the Green Transition and Promoting Economic Recovery through Integrated Energy and Climate Planning COM/2020/564 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1600339518571&uri=COM:2020:564:FIN (accessed on 20 April 2021).
- López-Vázquez, A.; Cadena-Zapata, M.; Campos-Magaña, S.; Zermeño-Gonzalez, A.; Mendez-Dorado, M. Comparison of energy used and effects on bulk density and yield by tillage systems in a semiarid condition of Mexico. Agronomy 2019, 9, 189. [Google Scholar] [CrossRef] [Green Version]
- Bajan, B.; Łukasiewicz, J.; Poczta-Wajda, A.; Poczta, W. Edible Energy Production and Energy Return on Investment—Long-Term Analysis of Global Changes. Energies 2021, 14, 1011. [Google Scholar] [CrossRef]
- Canning, P. Energy Use in the US Food System; Diane Publishing: Darby, DE, USA, 2011. [Google Scholar]
- Golaszewski, J.; de Visser, C.; Brodzinski, Z.; Myhan, R.; Olba-Ziety, E.; Stolarski, M.; Buisonjé, F.; Ellen, H.; Stanghellini, C.; van der Voort, M.; et al. State of the Art on Energy Efficiency in Agriculture. Country Data on Energy Consumption in Different Agro-Production Sectors in the European Countries. AGREE 2012, 1–68. Available online: https://research.wur.nl/en/publications/state-of-the-art-on-energy-efficiency-in-agriculture-country-data (accessed on 1 July 2021).
- Pimentel, D.; Pimentel, M.H. Food Energy and Society; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Chow, J.; Kopp, R.J.; Portney, P.R. Energy resources and global development. Science 2003, 302, 1528–1531. [Google Scholar] [CrossRef] [Green Version]
- Mardiana, A.; Riffat, S.B. Building energy consumption and carbon dioxide emissions: Threat to climate change. J. Earth Sci. Clim. Chang. 2015, 1. [Google Scholar] [CrossRef] [Green Version]
- Dehghani-sanij, A.; Sayigh, A. Cisterns: Sustainable Development, Architecture and Energy; River Publishers: Gistrup, Denmark, 2016. [Google Scholar]
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Farahani, E.; Kadner, S.; Seyboth, K.; Adler, A.; Baum, I.; Brunner, S.; Eickemeier, P.; et al. Climate Change 2014: Mitigation of Climate Change; Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Gagnon, N.; Hall, C.A.; Brinker, L. A preliminary investigation of energy return on energy investment for global oil and gas production. Energies 2009, 2, 490–503. [Google Scholar] [CrossRef]
- Hall, C.A.; Lambert, J.G.; Balogh, S.B. EROI of different fuels and the implications for society. Energy Policy 2014, 64, 141–152. [Google Scholar] [CrossRef] [Green Version]
- King, L.C.; Van Den Bergh, J.C. Implications of net energy-return-on-investment for a low-carbon energy transition. Nat. Energy 2018, 3, 334–340. [Google Scholar] [CrossRef] [Green Version]
- Ntanos, S.; Skordoulis, M.; Kyriakopoulos, G.; Arabatzis, G.; Chalikias, M.; Galatsidas, S.; Batzios, A.; Katsarou, A. Renewable Energy and Economic Growth: Evidence from European Countries. Sustainability 2018, 10, 2626. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A. Friends forever? The role of the Visegrad Group and European integration. Politics Cent. Eur. 2016, 12, 113–140. [Google Scholar] [CrossRef] [Green Version]
- Kokocinska, M.; Puziak, M. Regional income differences and their evolution after EU accession. The evidence from Visegrad Countries. J. Compet. 2018, 10, 85–101. [Google Scholar] [CrossRef]
- Luboslav, S.; Miroslav, G.; Michal, Z. Agricultural performance in the V4 countries and its position in the European Union. Agric. Econ. 2018, 64, 337–346. [Google Scholar] [CrossRef] [Green Version]
- Baráth, L.; Fertő, I. Productivity and convergence in European agriculture. J. Agric. Econ. 2017, 68, 228–248. [Google Scholar] [CrossRef] [Green Version]
- Kijek, A.; Kijek, T.; Nowak, A.; Skrzypek, A. Productivity and its convergence in agriculture in new and old European Union member states. Agric. Econ. 2019, 65, 1–9. [Google Scholar] [CrossRef]
- Śmiech, S.; Papież, M. Energy consumption and economic growth in the light of meeting the targets of energy policy in the EU: The bootstrap panel Granger causality approach. Energy Policy 2014, 71, 118–129. [Google Scholar] [CrossRef]
- Naudé, W.; Surdej, A.; Cameron, M. The Past and Future of Manufacturing in Central and Eastern Europe: Ready for Industry 4.0? Discuss. Pap. Inst. Labor Econ. 2019, paper no. 12141. Available online: https://ideas.repec.org/p/iza/izadps/dp12141.html (accessed on 1 July 2021).
- Strauss, S.; Rupp, S.; Love, T. (Eds.) Cultures of Energy: Power, Practices, Technologies; Left Coast Press: Walnut Creek, CA, USA, 2013. [Google Scholar] [CrossRef]
- Osička, J.; Lehotský, L.; Zapletalová, V.; Černoch, F.; Dančák, B. Natural gas market integration in the Visegrad 4 region: An example to follow or to avoid? Energy Policy 2018, 112, 184–197. [Google Scholar] [CrossRef]
- Zapletalová, V.; Komínková, M. Who is fighting against the EU’s energy and climate policy in the European Parliament? The contribution of the Visegrad Group. Energy Policy 2020, 139, 111326. [Google Scholar] [CrossRef]
- Kochanek, E. The Energy Transition in the Visegrad Group Countries. Energies 2021, 14, 2212. [Google Scholar] [CrossRef]
- Astrov, V.; Hanzl-Weiss, D.; Leitner, S.M.; Pindyuk, O.; Pöschl, J.; Stehrer, R. Energy Efficiency and EU Industrial Competitiveness: Energy Costs and Their Impact on Manufacturing Activity; (No. 405). wiiw Research Report; The Vienna Institute for International Economic Studies: Vienna, Austria, 2015. [Google Scholar]
- Tiwari, A.K.; Nasreen, S.; Shahbaz, M.; Hammoudeh, S. Time-frequency causality and connectedness between international prices of energy, food, industry, agriculture and metals. Energy Econ. 2020, 85, 104529. [Google Scholar] [CrossRef]
- García-Álvarez, M.T.; Moreno, B.; Soares, I. Analyzing the sustainable energy development in the EU-15 by an aggregated synthetic index. Ecol. Indic. 2016, 60, 996–1007. [Google Scholar] [CrossRef]
- Kasperowicz, R.; Štreimikienė, D. Economic growth and energy consumption: Comparative analysis of V4 and the “old” EU countries. J. Int. Studies 2016, 9, 181–194. [Google Scholar] [CrossRef]
- Rokicki, T.; Perkowska, A. Changes in Energy Supplies in the Countries of the Visegrad Group. Sustainability 2020, 12, 7916. [Google Scholar] [CrossRef]
- Florea, N.M.; Badircea, R.M.; Pirvu, R.C.; Manta, A.G.; Doran, M.D.; Jianu, E. The impact of agriculture and renewable energy on climate change in Central and East European Countries. Agric. Econ. 2020, 66, 444–457. [Google Scholar] [CrossRef]
- Rokicki, T.; Perkowska, A.; Klepacki, B.; Bórawski, P.; Bełdycka-Bórawska, A.; Michalski, K. Changes in Energy Consumption in Agriculture in the EU Countries. Energies 2021, 14, 1570. [Google Scholar] [CrossRef]
- Aydoğan, B.; Vardar, G. Evaluating the role of renewable energy, economic growth and agriculture on CO2 emission in E7 countries. Int. J. Sustain. Energy 2020, 39, 335–348. [Google Scholar] [CrossRef]
- Woods, J.; Williams, A.; Hughes, J.K.; Black, M.; Murphy, R. Energy and the food system. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2991–3006. [Google Scholar] [CrossRef]
- Monforti-Ferrario, F.; Pascua, I.; Motola, V.; Banja, M.; Scarlat, N.; Medarac, H.; Castellazzi, L.; Labanca, N.; Bertoldi, P.; Pennington, D. Energy Use in the EU Food Sector: State of Play and Opportunities for Improvement; Publications Office of the EU: Luxemburg, 2015. [Google Scholar] [CrossRef]
- Erdal, G.; Esengün, K.; Erdal, H.; Gündüz, O. Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy 2007, 32, 35–41. [Google Scholar] [CrossRef]
- Falcone, G.; Stillitano, T.; De Luca, A.I.; Di Vita, G.; Iofrida, N.; Strano, A.; Gulisano, G.; Pecorino, B.; D’Amico, M. Energetic and Economic Analyses for Agricultural Management Models: The Calabria PGI Clementine Case Study. Energies 2020, 13, 1289. [Google Scholar] [CrossRef] [Green Version]
- FAO. State of Food and Agriculture 2016; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; Available online: http://uni-sz.bg/truni11/wp-content/uploads/biblioteka/file/TUNI10042440(1).pdf (accessed on 22 June 2021).
- Pelletier, N.; Audsley, E.; Brodt, S.; Garnett, T.; Henriksson, P.; Kendall, A.; Kramer, K.J.; Murphy, D.; Nemecek, T.; Troell, M. Energy intensity of agriculture and food systems. Annu. Rev. Environ. Resour. 2011, 36, 223–246. [Google Scholar] [CrossRef]
- Robertson, G.P.; Paul, E.A.; Harwood, R.R. Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere. Science 2000, 289, 1922–1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Grönroos, J.; Seppälä, J.; Voutilainen, P.; Seuri, P.; Koikkalainen, K. Energy use in conventional and organic milk and rye bread production in Finland. Agric. Ecosyst. Environ. 2006, 117, 109–118. [Google Scholar] [CrossRef]
- Banaeian, N.; Zangeneh, M. Study on energy efficiency in corn production of Iran. Energy 2011, 36, 5394–5402. [Google Scholar] [CrossRef]
- Parcerisas, L.; Dupras, J. From mixed farming to intensive agriculture: Energy profiles of agriculture in Quebec, Canada, 1871–2011. Reg. Environ. Chang. 2018, 18, 1047–1057. [Google Scholar] [CrossRef]
- Arizpe, N.; Giampietro, M.; Ramos-Martin, J. Food security and fossil energy dependence: An international comparison of the use of fossil energy in agriculture (1991–2003). Crit. Rev. Plant Sci. 2011, 30, 45–63. [Google Scholar] [CrossRef]
- Markussen, M.V.; Østergård, H. Energy analysis of the Danish food production system: Food-EROI and fossil fuel dependency. Energies 2013, 6, 4170–4186. [Google Scholar] [CrossRef] [Green Version]
- Giampietro, M. Energy use in agriculture. In Encyclopedia of Life Sciences; Elsvier: Amsterdam, The Netherlands, 2003. [Google Scholar] [CrossRef]
- Campiotti, C.A.; Latini, A.; Scoccianti, M.; Biagiotti, D.; Giagnacovo, G.; Viola, C. Energy efficiency in Italian fruit and vegetables processing industries in the EU agro-food sector context. Riv. Studi Sulla Sostenibilita 2014, 16, 159–174. [Google Scholar] [CrossRef]
- Smil, V. Energy in Nature and Society: General Energetics of Complex Systems; MIT Press: London, UK, 2008. [Google Scholar]
- Klemes, J.; Perry, S. Methods to minimise energy use in food processing. In Handbook of Water and Energy Management in Food Processing; Klemes, J., Smith, R., Kim, J.K., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 136–199. [Google Scholar]
- Clairand, J.M.; Briceño-León, M.; Escrivá-Escrivá, G.; Pantaleo, A.M. Review of energy efficiency technologies in the food industry: Trends, barriers, and opportunities. IEEE Access 2020, 8, 48015–48029. [Google Scholar] [CrossRef]
- Degerli, B.; Nazir, S.; Sorgüven, E.; Hitzmann, B.; Özilgen, M. Assessment of the energy and exergy efficiencies of farm to fork grain cultivation and bread making processes in Turkey and Germany. Energy 2015, 93, 421–434. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Xie, X. Factor substitution and rebound effect in China’s food industry. Energy Convers. Manag. 2015, 105, 20–29. [Google Scholar] [CrossRef]
- Özilgen, M. Energy utilization and carbon dioxide emission during production of snacks. J. Clean. Prod. 2016, 112, 2601–2612. [Google Scholar] [CrossRef]
- Wang, L. Energy efficiency technologies for sustainable food processing. Energy Effic. 2014, 7, 791–810. [Google Scholar] [CrossRef]
- Pimentel, D.; Hepperly, P.; Hanson, J.; Douds, D.; Seidel, R. Environmental, energetic and economics comparisons of organic and conventional farming systems. BioScience 2005, 55, 573–582. [Google Scholar] [CrossRef]
- Pelletier, N.; Arsenault, N.; Tyedmers, P. Scenario modeling potential eco-efficiency gains from a transition to organic agriculture: Life cycle perspectives on Canadian canola, corn, soy, and wheat production. Environ. Manag. 2008, 42, 989–1001. [Google Scholar] [CrossRef]
- Reganold, J.P.; Palmer, A.S.; Lockhart, J.C.; Macgregor, A.N. Soil quality and financial performance of biodynamic and conventional farms in New Zealand. Science 1993, 260, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Drinkwater, L.E.; Wagoner, P.; Sarrantonio, M. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 1998, 396, 262–265. [Google Scholar] [CrossRef]
- Mäder, P.; Fliessbach, A.; Dubois, D.; Gunst, L.; Fried, P.; Niggli, U. Soil fertility and biodiversity in organic farming. Science 2002, 296, 1694–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murata, T.; Goh, K.M. Effects of cropping systems on soil organic matter in a pair of conventional and biodynamic mixed cropping farms in Canterbury, New Zealand. Biol. Fertil. Soils 1997, 25, 372–381. [Google Scholar] [CrossRef]
- Letourneau, D.K.; Goldstein, B. Pest damage and arthropod community structure in organic vs. conventional tomato production in California. J. Appl. Ecol. 2001, 38, 557–570. [Google Scholar] [CrossRef]
- Lynch, D.H.; MacRae, R.; Martin, R.C. The carbon and global warming potential impacts of organic farming: Does it have a significant role in an energy constrained world? Sustainability 2011, 3, 322–362. [Google Scholar] [CrossRef] [Green Version]
- Connor, D.J. Organic agriculture cannot feed the world. Field Crop. Res. 2008, 106, 187–190. [Google Scholar] [CrossRef]
- Reddy, B.S. Organic Farming: Status, Issues and Prospects: A Review. Agric. Econ. Res. Rev. 2010, 23, 343–358. [Google Scholar]
- Abbas, A.; Waseem, M.; Yang, M. An ensemble approach for assessment of energy efficiency of agriculture system in Pakistan|. Energy Effic. 2020, 1–14. [Google Scholar] [CrossRef]
- Burfoot, D.; Reavell, S.; Wilkinson, D.; Duke, N. Localised air delivery to reduce energy use in the food industry. J. Food Eng. 2004, 62, 23–28. [Google Scholar] [CrossRef]
- Fritzson, A.; Berntsson, T. Efficient energy use in a slaughter and meat processing plant—opportunities for process integration. J. Food Eng. 2006, 76, 594–604. [Google Scholar] [CrossRef]
- Klemeš, J.; Stehlík, P. Heat integration, energy management, CO2 capture and heat transfer enhancement. Appl. Therm. Eng. 2007, 27, 2627–2632. [Google Scholar] [CrossRef]
- Mirza, S. Reduction of energy consumption in process plants using nanofiltration and reverse osmosis. Desalination 2008, 224, 132–142. [Google Scholar] [CrossRef]
- Svoboda, J.; Lososová, J.; Zdenek, R. Analysis of costs and their effectiveness in the EU agrarian sector. Custos Agronegocio Line 2020, 16, 151–173. [Google Scholar]
- Bochtis, D.; Sorensen, C.A.G.; Kateris, D. Operations Management in Agriculture; Academic Press: London, UK, 2018. [Google Scholar]
- Mohammed, S.; Alsafadi, K.; Takács, I.; Harsányi, E. Contemporary changes of greenhouse gases emission from the agricultural sector in the EU-27. Geol. Ecol. Landsc. 2019, 4, 282–287. [Google Scholar] [CrossRef] [Green Version]
- Waheed, R.; Sarwar, S.; Wei, C. The survey of economic growth, energy consumption and carbon emission. Energy Rep. 2019, 5, 1103–1115. [Google Scholar] [CrossRef]
- Karkacier, O.; Goktolga, Z.G.; Cicek, A. A regression analysis of the effect of energy use in agriculture. Energy Policy 2006, 34, 3796–3800. [Google Scholar] [CrossRef]
- Briam, R.; Walker, M.E.; Masanet, E. A comparison of product-based energy intensity metrics for cheese and whey processing. J. Food Eng. 2015, 151, 25–33. [Google Scholar] [CrossRef]
- Wang, L. Energy Efficiency and Management in Food Processing Facilities; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Wu, Y. Energy intensity and its determinants in China’s regional economies. Energy Policy 2012, 41, 703–711. [Google Scholar] [CrossRef] [Green Version]
- Timmer, M.P.; Dietzenbacher, E.; Los, B.; Stehrer, R.; de Vries, G.J. An Illustrated User Guide to the World Input–Output Database: The Case of Global Automotive Production. Rev. Int. Econ. 2015, 23, 575–605. [Google Scholar] [CrossRef]
- Dietzenbacher, E.; Los, B.; Stehrer, R.; Timmer, M.P.; de Vries, G.J. The Construction of World Input-Output Tables in the WIOD Project. Econ. Syst. Res. 2013, 25, 71–98. [Google Scholar] [CrossRef]
- Timmer, M.P.; Los, B.; Stehrer, R.; de Vries, G.J. An Anatomy of the Global Trade Slowdown Based on the WIOD 2016 Release. Groningen Growth and Development Centre. University of Groningen. Available online: https://www.rug.nl/ggdc/html_publications/memorandum/gd162.pdf (accessed on 5 May 2020).
- Corsatea, T.D.; Lindner, S.; Arto, I.; Román, M.V.; Rueda-Cantuche, J.M.; Velázquez, A.; Amores, A.F.; Neuwahl, F. World Input-Output Database Environmental Accounts. Update 2000–2016. Publ. Off. Eur. Union 2019. [Google Scholar] [CrossRef]
- Hendrickson, C.T.; Lave, L.B.; Matthews, H.S. Environmental Life Cycle Assessment of Goods and Services: An Input-Output Approach; RFF Press: Washington, DC, USA, 2006. [Google Scholar]
- Bajan, B.; Sowa, K. Food consumption models around the world in the context of globalization. Intercathedra 2019, 3, 219–226. [Google Scholar]
- Wysocki, F.; Wagner, W. O ustalaniu wartości progowej zróżnicowania struktur z danych empirycznych (On establishing the threshold value of structure diversity from empirical data). Wiadomości Stat. 1988, 9, 18–20. (In Polish) [Google Scholar]
- Imran, M.; Ozcatalbas, O. Optimization of energy consumption and its effect on the energy use efficiency and greenhouse gas emissions of wheat production in Turkey. Discov. Sustain. 2021, 2. [Google Scholar] [CrossRef]
- Lu, W.-C. Greenhouse Gas Emissions, Energy Consumption and Economic Growth: A Panel Cointegration Analysis for 16 Asian Countries. Int. J. Environ. Res. Public Health 2017, 14, 1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajan, B.; Mrówczyńska-Kamińska, A. Measuring the agribusiness GDP in European Union countries. Econ. Sci. Agribus. Rural Econ. 2019, 3, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Ucak, H. Producer price disparities in the EU agriculture: Divergence or convergence? Agric. Econ 2012, 58, 367–371. [Google Scholar] [CrossRef] [Green Version]
- Bajan, B.; Mrówczyńska-Kamińska, A.; Poczta, W. Economic Energy Efficiency of Food Production Systems. Energies 2020, 13, 5826. [Google Scholar] [CrossRef]
- Goyal, S.K.; Jogdand, S.V.; Agrawal, A.K. Energy use pattern in rice milling industries—A critical appraisal. J. Food Sci. Technol. 2014, 51, 2907–2916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahara, K.; Kojima, T.; Inaba, A. Evaluation of CO2 payback time of power plants by LCA. Energy Convers. Manag. 1997, 38, 615–620. [Google Scholar] [CrossRef]
- Pach-Gurgul, A.; Śmiech, S.; Ulbrych, M. The effect of energy prices on energy intensity improvement–the case of the chemical industry in the V4 countries. Post-Communist Econ. 2020, 566–580. [Google Scholar] [CrossRef]
- Ćetković, S.; Buzogány, A. Between markets, politics and path-dependence: Explaining the growth of solar and wind power in six Central and Eastern European countries. Energy Policy 2020, 139, 111325. [Google Scholar] [CrossRef]
- Roser, M. Why Did Renewables Become So Cheap So Fast? And What Can We Do to Use This Global Opportunity for Green Growth? Our World Data. 2020. Available online: https://ourworldindata.org/cheap-renewables-growth#licence (accessed on 24 June 2021).
- Sulich, A.; Sołoducho-Pelc, L. Renewable Energy Producers’ Strategies in the Visegrád Group Countries. Energies 2021, 14, 3048. [Google Scholar] [CrossRef]
- Demirbas, A.; Al-Sasi, B.O.; Nizami, A.S. Recent volatility in the price of crude oil. Energy Sources Part B Econ. Plan. Policy 2017, 12, 408–414. [Google Scholar] [CrossRef]
- Ang, B.W.; Choong, W.L.; Ng, T.S. Energy security: Definitions, dimensions and indexes. Renew. Sustain. Energy Rev. 2015, 42, 1077–1093. [Google Scholar] [CrossRef]
- Papież, M.; Śmiech, S.; Frodyma, K. Determinants of renewable energy development in the EU countries. A 20-year perspective. Renew. Sustain. Energy Rev. 2018, 91, 918–934. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. Analyzing similarities between the European Union countries in terms of the structure and volume of energy production from renewable energy sources. Energies 2020, 13, 913. [Google Scholar] [CrossRef] [Green Version]
- Armeanu, D.S.; Vintila, G.; Gherghina, S.C. Does Renewable Energy Drive Sustainable Economic Growth? Multivariate Panel Data Evidence for EU-28 Countries. Energies 2017, 10, 381. [Google Scholar] [CrossRef]
- Bilan, Y.; Streimikiene, D.; Vasilyeva, T.; Lyulyov, O.; Pimonenko, T.; Pavlyk, A. Linking between Renewable Energy, CO2 Emissions, and Economic Growth: Challenges for Candidates and Potential Candidates for the EU Membership. Sustainability 2019, 11, 1528. [Google Scholar] [CrossRef] [Green Version]
- Lyeonov, S.; Pimonenko, T.; Bilan, Y.; Streimikiene, D.; Mentel, G. Assessment of Green Investments’ Impact on Sustainable Development: Linking Gross Domestic Product Per Capita, Greenhouse Gas Emissions and Renewable Energy. Energies 2019, 12, 3891. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.L.; Schimmelpfennig, D.; Fuglie, K.O. Is agricultural productivity growth slowing in Western Europe. In Productivity Growth in Agriculture: An International Perspective; Fuglie, K.O., Ed.; CABI: Oxfordshire, UK, 2012; pp. 109–125. [Google Scholar]
- Watkins, E. New EU energy strategy seeks security of supply in gas, oil. Oil Gas J. 2010, 108, 16–17. [Google Scholar]
- Mayer, M.; Peters, S. Shift of the EU Energy Policy and China’s Strategic Opportunity. China Q. Int. Strateg. Stud. 2017, 3, 137–158. [Google Scholar] [CrossRef]
- Dubský, Z.; Tichý, L.; Pavliňák, D. A quantifiable approach to the selection of criteria and indexation for comparison of the gas pipeline projects leading to the EU: Diversification rationality against securitisation? Energy 2021, 225, 120238. [Google Scholar] [CrossRef]
- Matsumoto, K.I.; Doumpos, M.; Andriosopoulos, K. Historical energy security performance in EU countries. Renew. Sustain. Energy Rev. 2018, 82, 1737–1748. [Google Scholar] [CrossRef]
- Dudin, M.N.; Zasko, V.N.; Dontsova, O.I.; Osokina, I.V. The energy politics of the european union and the possibility to implement it in post-soviet states. Int. J. Energy Econ. Policy 2020, 10, 409–416. [Google Scholar] [CrossRef]
Country | Othsourc | Waste | Othgas | Renew_ Nuclear | Coal_Coke_Crude | Electr_ Heatprod | Natgas | Petrol_ Products |
---|---|---|---|---|---|---|---|---|
Group 1 | ||||||||
AT | 0.0 | 0.3 | 0.2 | 8.2 | 1.7 | 17.6 | 22.1 | 50.0 |
BE | 0.0 | 0.4 | 0.5 | 12.0 | 4.5 | 21.5 | 12.6 | 48.5 |
DK | 0.0 | 0.4 | 0.0 | 4.1 | 10.0 | 25.2 | 20.5 | 39.8 |
ES | 0.0 | 0.1 | 0.1 | 8.0 | 3.4 | 19.9 | 18.1 | 50.4 |
FR | 0.0 | 0.1 | 0.2 | 9.7 | 3.8 | 18.0 | 25.6 | 42.6 |
IE | 0.0 | 0.0 | 0.0 | 0.5 | 4.9 | 19.4 | 16.6 | 58.5 |
IT | 0.0 | 0.0 | 0.1 | 1.6 | 1.3 | 20.0 | 28.4 | 48.4 |
LU | 0.0 | 0.4 | 0.0 | 0.8 | 0.2 | 33.0 | 17.4 | 48.2 |
Group 2 | ||||||||
DE | 0.0 | 0.1 | 0.8 | 7.1 | 8.8 | 16.9 | 26.8 | 39.5 |
GB | 0.0 | 0.0 | 0.3 | 5.7 | 2.7 | 23.3 | 40.1 | 27.8 |
CZ | 0.0 | 0.1 | 0.5 | 1.7 | 15.6 | 25.0 | 26.2 | 31.0 |
SK | 0.0 | 0.4 | 0.9 | 16.0 | 8.1 | 25.7 | 28.9 | 20.0 |
HU | 0.0 | 0.1 | 0.4 | 8.4 | 6.3 | 19.7 | 34.2 | 30.9 |
Group 3 | ||||||||
GR | 0.0 | 0.0 | 0.0 | 8.6 | 7.3 | 16.1 | 3.5 | 64.4 |
PT | 0.0 | 0.0 | 0.0 | 7.2 | 1.8 | 17.4 | 3.8 | 69.7 |
Group 4 | ||||||||
FI | 0.0 | 0.1 | 0.1 | 14.1 | 8.0 | 29.5 | 5.5 | 42.8 |
SE | 0.0 | 0.3 | 0.4 | 32.4 | 1.1 | 26.4 | 8.0 | 31.5 |
Group 5 | ||||||||
PL | 0.0 | 0.0 | 0.7 | 4.5 | 34.1 | 13.0 | 4.2 | 43.5 |
Group 6 | ||||||||
NL | 0.0 | 0.5 | 0.3 | 1.0 | 3.0 | 38.7 | 44.2 | 12.2 |
Country | Othsourc | Waste | Othgas | Renew_ Nuclear | Coal_Coke_Crude | Electr_ Heatprod | Natgas | Petrol_ Products |
---|---|---|---|---|---|---|---|---|
Group 1 | ||||||||
DE | 0.0 | 0.5 | 0.2 | 5.0 | 7.6 | 24.1 | 28.0 | 34.6 |
DK | 0.0 | 0.4 | 0.0 | 9.6 | 5.9 | 28.9 | 22.4 | 32.9 |
FR | 0.0 | 0.1 | 0.1 | 12.9 | 2.5 | 24.5 | 25.6 | 34.3 |
CZ | 0.0 | 0.1 | 0.8 | 13.1 | 9.5 | 24.1 | 25.7 | 26.7 |
SK | 0.0 | 1.2 | 0.4 | 12.2 | 3.9 | 25.9 | 29.2 | 27.1 |
HU | 0.1 | 0.2 | 0.4 | 13.8 | 2.5 | 23.2 | 29.2 | 30.6 |
Group 2 | ||||||||
ES | 0.0 | 0.0 | 0.0 | 7.4 | 1.3 | 25.5 | 16.8 | 48.9 |
IT | 0.0 | 0.4 | 0.1 | 4.6 | 1.6 | 29.6 | 22.7 | 41.1 |
PT | 0.0 | 0.1 | 0.0 | 5.7 | 2.0 | 29.4 | 18.6 | 44.1 |
LU | 0.0 | 0.3 | 0.0 | 5.6 | 0.1 | 39.3 | 17.7 | 37.0 |
Group 3 | ||||||||
BE | 0.0 | 0.6 | 0.3 | 11.4 | 1.3 | 27.9 | 44.3 | 14.3 |
NL | 0.0 | 0.5 | 0.2 | 4.7 | 2.1 | 33.0 | 48.2 | 11.3 |
Group 4 | ||||||||
FI | 0.0 | 0.4 | 0.2 | 17.4 | 6.2 | 43.2 | 3.3 | 29.2 |
GR | 0.0 | 0.6 | 0.0 | 14.0 | 8.1 | 29.9 | 8.7 | 38.5 |
Group 5 | ||||||||
AT | 0.0 | 0.4 | 0.1 | 23.1 | 0.7 | 29.5 | 24.5 | 21.7 |
GB | 0.0 | 0.1 | 0.2 | 14.8 | 1.9 | 28.0 | 35.0 | 20.0 |
Group 6 | ||||||||
PL | 0.0 | 0.1 | 0.8 | 8.2 | 31.9 | 14.2 | 11.7 | 33.1 |
Group 7 | ||||||||
SE | 0.0 | 1.4 | 0.2 | 36.4 | 0.4 | 36.3 | 8.4 | 16.9 |
Group 8 | ||||||||
IE | 0.0 | 0.1 | 0.0 | 3.4 | 3.5 | 22.2 | 12.4 | 58.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bajan, B.; Łukasiewicz, J.; Mrówczyńska-Kamińska, A. Energy Consumption and Its Structures in Food Production Systems of the Visegrad Group Countries Compared with EU-15 Countries. Energies 2021, 14, 3945. https://doi.org/10.3390/en14133945
Bajan B, Łukasiewicz J, Mrówczyńska-Kamińska A. Energy Consumption and Its Structures in Food Production Systems of the Visegrad Group Countries Compared with EU-15 Countries. Energies. 2021; 14(13):3945. https://doi.org/10.3390/en14133945
Chicago/Turabian StyleBajan, Bartłomiej, Joanna Łukasiewicz, and Aldona Mrówczyńska-Kamińska. 2021. "Energy Consumption and Its Structures in Food Production Systems of the Visegrad Group Countries Compared with EU-15 Countries" Energies 14, no. 13: 3945. https://doi.org/10.3390/en14133945
APA StyleBajan, B., Łukasiewicz, J., & Mrówczyńska-Kamińska, A. (2021). Energy Consumption and Its Structures in Food Production Systems of the Visegrad Group Countries Compared with EU-15 Countries. Energies, 14(13), 3945. https://doi.org/10.3390/en14133945