Identification of Extreme Wind Events Using a Weather Type Classification
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.1.1. Meteorological Data—Atmospheric Reanalyses
2.1.2. Wind Power Data
2.2. Methodology
2.2.1. Wind Power Variability and Extreme Events
2.2.2. Weather Classification Approach
- -
- The flow direction (FL) is described by tan−1 (WF/SF). In case of WF above 0, 180° were added.
- -
- When |ZT| < FT, the magnitude dominates the vorticity. In this case, the flow was split into eight directions (N, NE, E, SE, S, SW, W, and NW), with 45° per sector;
- -
- When FT < |ZT| < 2 FT, the circulation in that specific day is identified as hybrid being controlled by the vorticity and magnitude. In this case, 8 × 2 circulation regimes were considered.
- -
- When |ZT| > 2 FT, the vorticity leads the magnitude. If ZT is below 0, the pattern is anticyclonic (H) type. Otherwise, when ZT is above 0 it is a cyclonic (L) type.
3. Link Weather-Type Classification with Wind Power Generation
3.1. Weather Classification Type
3.2. Wind Power Variability
3.2.1. Daily Average Capacity Factor
3.2.2. Wind Power Capacity Factor Daily Profile
3.2.3. Characterization of Low-Generation Events
3.2.4. Characterization of Wind Power Ramps
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hansen, K.; Breyer, C.; Lund, H. Status and perspectives on 100% renewable energy systems. Energy 2019, 175, 471–480. [Google Scholar] [CrossRef]
- European Comission. National Energy and Climate Plans. Available online: https://ec.europa.eu/info/energy-climate-change-environment/implementation-eu-countries/energy-and-climate-governance-and-reporting/national-energy-and-climate-plans_en (accessed on 4 May 2021).
- Raynaud, D.; Hingray, B.; François, B.; Creutin, J.D. Energy droughts from variable renewable energy sources in European climates. Renew. Energy 2018, 125, 578–589. [Google Scholar] [CrossRef]
- Blanco, H.; Faaij, A. A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage. Renew. Sustain. Energy Rev. 2018, 81, 1049–1086. [Google Scholar] [CrossRef]
- Gallego-Castillo, C.; Cuerva-Tejero, A.; Lopez-Garcia, O. A review on the recent history of wind power ramp forecasting. Renew. Sustain. Energy Rev. 2015, 52, 1148–1157. [Google Scholar] [CrossRef] [Green Version]
- Drücke, J.; Borsche, M.; James, P.; Kaspar, F.; Pfeifroth, U.; Ahrens, B.; Trentmann, J. Climatological analysis of solar and wind energy in Germany using the Grosswetterlagen classification. Renew. Energy 2021, 164, 1254–1266. [Google Scholar] [CrossRef]
- Liu, F.; Li, R.; Dreglea, A. Wind Speed and Power Ultra Short-Term Robust Forecasting Based on Takagi–Sugeno Fuzzy Model. Energies 2019, 12, 3551. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Qiao, Y.; Li, M.; Shi, L. Wind Power Ramp Event Forecasting Based on Feature Extraction and Deep Learning. Energies 2020, 13, 6449. [Google Scholar] [CrossRef]
- Zhukov, A.V.; Sidorov, D.N.; Foley, A.M. Random Forest Based Approach for Concept Drift Handling. In Communications in Computer and Information Science; Springer: Cham, Switzerland, 2017; Volume 661, pp. 69–77. ISBN 9783319529196. [Google Scholar]
- Zhang, J.; Cui, M.; Hodge, B.M.; Florita, A.; Freedman, J. Ramp forecasting performance from improved short-term wind power forecasting over multiple spatial and temporal scales. Energy 2017, 122, 528–541. [Google Scholar] [CrossRef] [Green Version]
- Couto, A.; Costa, P.; Rodrigues, L.; Lopes, V.V.; Estanqueiro, A. Impact of Weather Regimes on the Wind Power Ramp Forecast in Portugal. IEEE Trans. Sustain. Energy 2015, 6, 934–942. [Google Scholar] [CrossRef]
- Correia, J.M.; Bastos, A.; Brito, M.C.; Trigo, R.M. The influence of the main large-scale circulation patterns on wind power production in Portugal. Renew. Energy 2017, 102, 214–223. [Google Scholar] [CrossRef]
- Lacerda, M.; Couto, A.; Estanqueiro, A. Wind Power Ramps Driven by Windstorms and Cyclones. Energies 2017, 10, 1475. [Google Scholar] [CrossRef] [Green Version]
- NCEP/NCAR NCEP/NCAR Global Reanalysis Products, 1948–Continuing. Available online: https://data.ucar.edu/dataset/ncep-ncar-global-reanalysis-products-1948-continuing1 (accessed on 12 July 2019).
- Berrisford, P.; Dee, D.P.; Poli, P.; Brugge, R.; Fielding, K.; Fuentes, M.; Kallberg, P.; Kobayashi, S.; Uppala, S.; Simmons, A. The ERA-Interim Archive Version 2.0.; ERA Report Series; ECMWF: Reading, UK, 2011; p. 23. [Google Scholar]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- NCEP/DOE NCEP/DOE Reanalysis 2 (R2). Available online: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html (accessed on 12 July 2019).
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.; Iredell, M.; et al. NCEP Climate Forecast System Version 2 (CFSv2) 6-hourly Products. Res. Data Arch. Natl. Cent. Atmos. Res. Comput. Inf. Syst. Lab. 2011, 10, D61C1TXF. [Google Scholar]
- Couto, A.; Silva, J.; Costa, P.; Santos, D.; Simões, T.; Estanqueiro, A. Towards a high-resolution offshore wind Atlas—The Portuguese Case. IOP Conf. Ser. J. Phys. Conf. Ser. 2019, 1356, 14. [Google Scholar] [CrossRef]
- Baumgartner, J.; Gruber, K.; Simoes, S.G.; Saint-Drenan, Y.M.; Schmidt, J. Less information, similar performance: Comparing machine learning-based time series ofwind power generation to renewables.ninja. Energies 2020, 13, 2277. [Google Scholar] [CrossRef]
- Staffell, I.; Pfenninger, S. Using bias-corrected reanalysis to simulate current and future wind power output. Energy 2016, 114, 1224–1239. [Google Scholar] [CrossRef] [Green Version]
- González-Aparicio, I.; Zucker, A.; Careri, F.; Monforti, F.; Huld, T.; Badger, J. EMHIRES Dataset. Part I: Wind Power Generation European Meteorological Derived HIgh Resolution RES Generation Time Series for Present and Future Scenarios; European Comission: Brussels, Belgium, 2016. [Google Scholar]
- González-Aparicio, I.; Monforti, F.; Volker, P.; Zucker, A.; Careri, F.; Huld, T.; Badger, J. Simulating European wind power generation applying statistical downscaling to reanalysis data. Appl. Energy 2017, 199, 155–168. [Google Scholar] [CrossRef]
- Couto, A. Creating a Wind Power Long-Term Time Series for Portugal—A MCP Approach; LNEG Internal Technical Report; LNEG: Amadora, Portugal, 2020; p. 12.
- Freedman, J.; Markus, M.; Penc, R. Analysis of West Texas Wind Plant Ramp-Up and Ramp-Down Events; AWS Truewind Report; AWS Truewind LLC: Albany, NY, USA, 2008; p. 28. [Google Scholar]
- Ohlendorf, N.; Schill, W.-P. Frequency and duration of low-wind-power events in Germany Environmental Research Letters Frequency and duration of low-wind-power events in Germany. Environ. Res. Lett. 2020, 15, 13. [Google Scholar] [CrossRef]
- Philipp, A.; Bartholy, J.; Beck, C.; Erpicum, M.; Esteban, P.; Fettweis, X.; Huth, R.; James, P.; Jourdain, S.; Kreienkamp, F.; et al. Cost733cat—A database of weather and circulation type classifications. Phys. Chem. Earth Parts A B C 2010, 35, 360–373. [Google Scholar] [CrossRef]
- Huth, R.; Beck, C.; Philipp, A.; Demuzere, M.; Ustrnul, Z.; Cahynová, M.; Kyselý, J.; Tveito, O.E. Classifications of atmospheric circulation patterns: Recent advances and applications. Ann. N. Y. Acad. Sci. 2008, 1146, 105–152. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.D.; Harpham, C.; Briffa, K.R. Lamb weather types derived from reanalysis products. Int. J. Climatol. 2013, 33, 1129–1139. [Google Scholar] [CrossRef]
- Schyska, B.U.; Couto, A.; von Bremen, L.; Estanqueiro, A.; Heinemann, D. Weather dependent estimation of continent-wide wind power generation based on spatio-temporal clustering. Adv. Sci. Res. 2017, 14, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Jenkinson, A.F.; Collinson, B.P. An initial climatology of gales over the North Sea. Synop. Climatol. Branch Memo. 1977, 62, 18. [Google Scholar]
- Costa, P.; Estanqueiro, A.; Miranda, P. Building a wind atlas for mainland Portugal using a weather type classification. In Proceedings of the European Wind Energy Conference, Athens, Greece, 27 February–2 March 2006; pp. 2081–2089. [Google Scholar]
- Trigo, R.; da Camara, C.C. Circulation weather types and their influence on the precipitation regime in Portugal. Int. J. Climatol. 2000, 20, 1559–1581. [Google Scholar] [CrossRef]
- Ramos, A.M.; Cortesi, N.; Trigo, R.M. Circulation weather types and spatial variability of daily precipitation in the Iberian Peninsula. Front. Earth Sci. 2014, 2, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Couto, A.; Estanqueiro, A. Exploring Wind and Solar PV Generation Complementarity to Meet Electricity Demand. Energies 2020, 13, 4132. [Google Scholar] [CrossRef]
- Emeis, S. Current issues in wind energy meteorology. Meteorol. Appl. 2014, 21, 803–819. [Google Scholar] [CrossRef]
EMHires | Renewables.ninja | MCP |
---|---|---|
0.88 | 0.86 | 0.94 |
Circulation Indexes | Flow Features |
---|---|
SF | North–south direction |
WF | West–east direction |
FT | Flow magnitude |
ZS | Low-pressure circulation |
ZW | High-pressure circulation |
ZT | Relative vorticity |
Directional Sector | Anticyclonic System | Cyclonic System |
---|---|---|
N—North | H + N | L + N |
NE—Northeast | H + NE | L + NE |
E—East | H + E | L + E |
SE—Southeast | H + SE | L + SE |
S—South | H + S | L + S |
SW—Southwest | H + SW | L + SW |
W—West | H + W | L + W |
NW—Northwest | H + NW | L + NW |
H | L |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Couto, A.; Costa, P.; Simões, T. Identification of Extreme Wind Events Using a Weather Type Classification. Energies 2021, 14, 3944. https://doi.org/10.3390/en14133944
Couto A, Costa P, Simões T. Identification of Extreme Wind Events Using a Weather Type Classification. Energies. 2021; 14(13):3944. https://doi.org/10.3390/en14133944
Chicago/Turabian StyleCouto, António, Paula Costa, and Teresa Simões. 2021. "Identification of Extreme Wind Events Using a Weather Type Classification" Energies 14, no. 13: 3944. https://doi.org/10.3390/en14133944
APA StyleCouto, A., Costa, P., & Simões, T. (2021). Identification of Extreme Wind Events Using a Weather Type Classification. Energies, 14(13), 3944. https://doi.org/10.3390/en14133944