Expected Recurrence of Extreme Winds in Northwestern Sahara and Associated Uncertainties
Abstract
:1. Introduction
2. Data
2.1. Observed Wind Data
2.2. High-Resolution Simulation over the Northwestern Sahara
3. Methodology
3.1. Statistical Modeling of Extreme Winds
3.1.1. Probability Distributions of Extreme Values
3.1.2. Estimation of Distribution Parameters
3.1.3. Definition of Extremes
3.1.4. Confidence Intervals and Goodness-of-Fit Tests
3.2. Constraining the Methodological Uncertainty
4. Results
4.1. Methodological Sensitivity Analysis of Wind Return Levels
4.2. Wind and Wind Gust Return Level Estimates over Northwestern Sahara and High Atlas
4.3. Simulated Wind Return Level Maps
5. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Repetto, M.P.; Burlando, M.; Solari, G.; De Gaetano, P.; Pizzo, M.; Tizzi, M. A web-based GIS platform for the safe management and risk assessment of complex structural and infrastructural systems exposed to wind. Adv. Eng. Softw. 2018, 117, 29–45. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Chiang, F.; Huning, L.S.; Love, C.A.; Mallakpour, I.; Mazdiyasni, O.; Moftakhari, H.; Papalexiou, S.M.; Ragno, E.; Sadegh, M. Climate extremes and compound hazards in a warming world. Annu. Rev. Earth Planet. Sci. 2020, 48, 519–548. [Google Scholar] [CrossRef] [Green Version]
- Ebi, K.L.; Vanos, J.; Baldwin, J.W.; Bell, J.E.; Hondula, D.M.; Errett, N.A.; Hayes, K.; Reid, C.E.; Saha, S.; Spector, J.; et al. Extreme weather and climate change: Population health and health system implications. Annu. Rev. Public Health 2021, 42, 293–315. [Google Scholar] [CrossRef] [PubMed]
- Glantz, M.H. Climate and weather modification in and around arid lands in Africa. In Desertification; CRC Press: Boca Raton, FL, USA, 2019; pp. 307–337. [Google Scholar]
- Goudie, A.; Middleton, N. Saharan dust storms: Nature and consequences. Earth-Sci. Rev. 2001, 56, 179–204. [Google Scholar] [CrossRef]
- Jankowiak, I.; Tanré, D. Satellite climatology of Saharan dust outbreaks: Method and preliminary results. J. Clim. 1992, 5, 646–656. [Google Scholar] [CrossRef]
- Alpert, P.; Ganor, E. A jet stream associated heavy dust storm in the western Mediterranean. J. Geophys. Res. Atmos. 1993, 98, 7339–7349. [Google Scholar] [CrossRef]
- Washington, R.; Todd, M.C. Atmospheric controls on mineral dust emission from the Bodélé Depression, Chad: The role of the low level jet. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Knippertz, P.; Fink, A.H. Synoptic and dynamic aspects of an extreme springtime Saharan dust outbreak. Q. J. R. Meteorol. Soc. 2006, 132, 1153–1177. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.C. Maintenance of the midtropospheric North African summer circulation: Saharan high and African easterly jet. J. Clim. 2005, 18, 2943–2962. [Google Scholar] [CrossRef]
- Hsieh, J.S.; Cook, K.H. Generation of African easterly wave disturbances: Relationship to the African easterly jet. Mon. Weather Rev. 2005, 133, 1311–1327. [Google Scholar] [CrossRef]
- Flamant, C.; Chaboureau, J.P.; Parker, D.; Taylor, C.; Cammas, J.P.; Bock, O.; Timouke, F.; Pelona, J. Airborne observations of the impact of a convective system on the planetary boundary layer thermodynamics and aerosol distribution in the inter-tropical discontinuity region of the West African Monsoon. Q. J. R. Meteorol. Soc. 2007, 133, 1175–1189. [Google Scholar] [CrossRef]
- Chen, T.C. Characteristics of African easterly waves depicted by ECMWF reanalyses for 1991–2000. Mon. Weather Rev. 2006, 134, 3539–3566. [Google Scholar] [CrossRef] [Green Version]
- Emmel, C.; Knippertz, P.; Schulz, O. Climatology of convective density currents in the southern foothills of the Atlas Mountains. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Kane, R.J. Correlating lightning to severe local storms in the northeastern United States. Weather Forecast. 1991, 6, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Orf, L.; Kantor, E.; Savory, E. Simulation of a downburst-producing thunderstorm using a very high-resolution three-dimensional cloud model. J. Wind Eng. Ind. Aerodyn. 2012, 104, 547–557. [Google Scholar] [CrossRef]
- Knippertz, P.; Deutscher, C.; Kandler, K.; Muller, T.; Schulz, O.; Schutz, L. Dust mobilization due to density currents in the Atlas region: Observations from the Saharan Mineral Dust Experiment 2006 field campaign. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.D.; Kuciauskas, A.P.; Liu, M.; Ji, Q.; Reid, J.S.; Breed, D.W.; Walker, A.L.; Mandoos, A.A. Haboob dust storms of the southern Arabian Peninsula. J. Geophys. Res. Atmos. 1984 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Fujita, T.T. The Downburst: Microburst and Macroburst; SMRP-RP-210, (Available from NTIS as PB85 148 880.); University of Chicago: Chicago, IL, USA, 1985. [Google Scholar]
- Lawson, T. Haboob structure at Khartoum. Weather 1971, 26, 105–112. [Google Scholar] [CrossRef]
- Helgren, D.; Prospero, J. Wind velocities associated with dust deflation events in the western Sahara. J. Clim. Appl. Meteorol. 1987, 26, 1147–1151. [Google Scholar] [CrossRef] [Green Version]
- Knippertz, P.; Ansmann, A.; Althausen, D.; Müller, D.; Tesche, M.; Bierwirth, E.; Dinter, T.; Müller, T.; Von Hoyningen-Huene, W.; Schepanski, K.; et al. Dust mobilization and transport in the northern Sahara during SAMUM 2006–a meteorological overview. Tellus B 2009, 61, 12–31. [Google Scholar] [CrossRef] [Green Version]
- Schepanski, K.; Tegen, I.; Todd, M.; Heinold, B.; Bönisch, G.; Laurent, B.; Macke, A. Meteorological processes forcing Saharan dust emission inferred from MSG-SEVIRI observations of subdaily dust source activation and numerical models. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- UNEP; WMO. Global Assessment of Sand and Dust Storms; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2016. [Google Scholar]
- Efthimiou, G.; Kumar, P.; Giannissi, S.; Feiz, A.; Andronopoulos, S. Prediction of the wind speed probabilities in the atmospheric surface layer. Renew. Energy 2019, 132, 921–930. [Google Scholar] [CrossRef]
- Larsén, X.G.; Mann, J.; Rathmann, O.; Jørgensen, H.E. Uncertainties of the 50-year wind from short time series using Generalized Extreme Value Distribution and Generalized Pareto Distribution. Wind Energy 2015, 18, 59–74. [Google Scholar] [CrossRef] [Green Version]
- Palutikof, J.; Brabson, B.; Lister, D.; Adcock, S. A review of methods to calculate extreme wind speeds. Meteorol. Appl. 1999, 6, 119–132. [Google Scholar] [CrossRef]
- Katz, R.W. Statistics of extremes in climate change. Clim. Chang. 2010, 100, 71–76. [Google Scholar] [CrossRef]
- Von Storch, H. Climate models and modeling: An editorial essay. WIRESs Clim. Chang. 2010, 1, 305–310. [Google Scholar] [CrossRef]
- Deque, M.; Somot, S. Weighted frequency distributions express modelling uncertainties in the ENSEMBLES regional climate experiments. Clim. Res. 2010, 44, 195–209. [Google Scholar] [CrossRef] [Green Version]
- Solomos, S.; Kallos, G.; Mavromatidis, E.; Kushta, J. Density currents as a desert dust mobilization mechanism. Atmos. Chem. Phys. 2012, 12, 11199–11211. [Google Scholar] [CrossRef] [Green Version]
- Knippertz, P.; Trentmann, J.; Seifert, A. High-resolution simulations of convective cold pools over the northwestern Sahara. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Reinfried, F.; Tegen, I.; Heinold, B.; Hellmuth, O.; Schepanski, K.; Cubasch, U.; Huebener, H.; Knippertz, P. Simulations of convectively-driven density currents in the Atlas region using a regional model: Impacts on dust emission and sensitivity to horizontal resolution and convection schemes. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Beljaars, A. The influence of sampling and filtering on measured wind gusts. J. Atmos. Oceanic. Technol. 1987, 4, 613–626. [Google Scholar] [CrossRef] [Green Version]
- Speth, P.; Diekkruger, B.E. An Integrated Approach to the Efficient Management of Scarce Water Resources in West Africa-Case Studies for Selected River Catchments in Different Climate Zones; Technical Report; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 2; Technical Report TN-468+STR, NCAR; NCAR: Boulder, CO, USA, 2005. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4; National Center for Atmospheric Research: Boulder, CO, USA, 2019; p. 145. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. R. Meteor. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Naveau, P.; Nogaj, M.; Ammann, C.; Yiou, P.; Cooley, D.; Jomelli, V. Statistical methods for the analysis of climate extremes. C. R. Geosci. 2005, 337, 1013–1022. [Google Scholar] [CrossRef]
- Coles, S.; Bawa, J.; Trenner, L.; Dorazio, P. An Introduction to Statistical Modeling of Extreme Values; Springer: Berlin/Heidelberg, Germany, 2001; Volume 208. [Google Scholar]
- Asmussen, S.; Binswanger, K.; Højgaard, B. Rare events simulation for heavy-tailed distributions. Bernoulli 2000, 6, 303–322. [Google Scholar] [CrossRef]
- Huser, R.; Davison, A. Space–time modelling of extreme events. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2014, 76, 439–461. [Google Scholar] [CrossRef] [Green Version]
- Hosking, J.R.; Wallis, J.R. Parameter and quantile estimation for the Generalized Pareto Distribution. Technometrics 1987, 29, 339–349. [Google Scholar] [CrossRef]
- Tomassini, L.; Jacob, D. Spatial analysis of trends in extreme precipitation events in high-resolution climate model results and observations for Germany. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Kallache, M.; Vrac, M.; Naveau, P.; Michelangeli, P.A. Nonstationary probabilistic downscaling of extreme precipitation. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Sardeshmukh, P.D.; Compo, G.P.; Penland, C. Need for caution in interpreting extreme weather statistics. J. Clim. 2015, 28, 9166–9187. [Google Scholar] [CrossRef]
- Martins, E.S.; Stedinger, J.R. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resour. Res. 2000, 36, 737–744. [Google Scholar] [CrossRef]
- Karvanen, J. Estimation of quantile mixtures via L-moments and trimmed L-moments. Comput. Stat. Data Anal. 2006, 51, 947–959. [Google Scholar] [CrossRef]
- Coles, S.G.; Powell, E.A. Bayesian methods in extreme value modelling: A review and new developments. In International Statistical Review/Revue Internationale de Statistique; International Statistical Institute (ISI): Voorburg, The Netherlands, 1996; pp. 119–136. [Google Scholar]
- Rasmussen, P.F. Generalized probability weighted moments: Application to the Generalized Pareto Distribution. Water Resour. Res. 2001, 37, 1745–1751. [Google Scholar] [CrossRef]
- Newcombe, R.G. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Stat. Med. 1998, 17, 857–872. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. In Statistical Science; International Statistical Institute (ISI): Voorburg, The Netherlands, 1986; pp. 54–75. [Google Scholar]
- Jarraud, M. Guide to Meteorological Instruments and Methods of Observation (WMO-No. 8); World Meteorological Organisation: Geneva, Switzerland, 2008. [Google Scholar]
- Walshaw, D. Generalized extreme value distribution. Encycl. Environ. 2013, 79, 423–427. [Google Scholar]
- Gumbel, E.J. Statistics of Extremes; Courier Corporation: Honolulu, HI, USA, 2012. [Google Scholar]
- Toreti, A.; Xoplaki, E.; Maraun, D.; Kuglitsch, F.; Wanner, H.; Luterbacher, J. Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns. Nat. Hazards Earth Syst. Sci. 2010, 10, 1037. [Google Scholar] [CrossRef]
- Barreto-Souza, W.; Santos, A.H.; Cordeiro, G.M. The beta generalized exponential distribution. J. Stat. Comput. Simul. 2010, 80, 159–172. [Google Scholar] [CrossRef] [Green Version]
- Kunz, M.; Mohr, S.; Rauthe, M.; Lux, R.; Kottmeier, C. Assessment of extreme wind speeds from Regional Climate Models–Part 1: Estimation of return values and their evaluation. Nat. Hazards Earth Syst. Sci. 2010, 10, 907–922. [Google Scholar] [CrossRef] [Green Version]
- Lopes, R.H.; Reid, I.; Hobson, P.R. The two-dimensional Kolmogorov-Smirnov test. In Proceedings of the XI International Workshop on Advanced Computing and Analysis Techniques in Physics Research, Nikhef, Amsterdam, The Netherlands, 23–27 April 2007. [Google Scholar]
- Rahman, M.; Pearson, L.M.; Heien, H.C. A modified Anderson-Darling test for uniformity. Bull. Malays. Math. Sci. Soc. 2006, 29, 11–16. [Google Scholar]
- Chernobai, A.; Rachev, S.T.; Fabozzi, F.J. Composite goodness-of-fit tests for left-truncated loss samples. In Handbook of Financial Econometrics and Statistics; Springer: Berlin/Heidelberg, Germany, 2015; pp. 575–596. [Google Scholar]
- Lancaster, H.O. Chi-Square Distribution; Wiley Online Library: Hoboken, NJ, USA, 1969. [Google Scholar]
- Graybeal, D.Y.; DeGaetano, A.T.; Eggleston, K.L. Complex quality assurance of historical hourly surface airways meteorological data. J. Atmos. Ocean. Technol. 2004, 21, 1156–1169. [Google Scholar] [CrossRef]
- Kollu, R.; Rayapudi, S.R.; Narasimham, S.; Pakkurthi, K.M. Mixture probability distribution functions to model wind speed distributions. Int. J. Energy Environ. Eng. 2012, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cook, N.J. Towards a better estimation of wind speed. J. Wind Eng. Ind. Aerodyn. 1982, 9, 295–323. [Google Scholar] [CrossRef]
- Cook, N.J.; Harris, R.I.; Whiting, R. Extreme wind speeds in mixed climates revisited. J. Wind Eng. Ind. Aerodyn. 2003, 91, 403–422. [Google Scholar] [CrossRef]
- Von Storch, H.; Zwiers, F. Statistical Analysis in Climate Research; Cambridge University Press: Cambridge, UK, 1999; 494p. [Google Scholar]
- Romero, R.; Summer, G.; Ramis, C.; Genovés, A. A classification of the atmospheric circulation patterns producing significant daily rainfall in the Spanish Mediterranean area. Int. J. Climatol. 1999, 19, 765–785. [Google Scholar] [CrossRef]
- Yarnal, B.; Comrie, A.C.; Frakes, B.; Brown, D.P. Developments and prospects in synoptic climatology. Int. J. Climatol. 2001, 21, 1923–1950. [Google Scholar] [CrossRef]
- Bracale, A.; Carpinelli, G.; De Falco, P. A new finite mixture distribution and its expectation-maximization procedure for extreme wind speed characterization. Renew. Energy 2017, 113, 1366–1377. [Google Scholar] [CrossRef]
- Bastine, D.; Larsén, X.; Witha, B.; Dörenkämper, M.; Gottschall, J. Extreme Winds in the New European Wind Atlas; Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2018; Volume 1102, p. 012006. [Google Scholar]
Category | Variant | Option | Reference |
---|---|---|---|
Wind data | Data Source | Observations | [26] |
T-masked simulations | — | ||
No T-masked simulations | — | ||
Variable | 10-min. wind (24 sites) | [53] | |
Wind gust (9 sites) | [53] | ||
Methodological Choice | Family Distribution | GEVD | [54] |
Gumbel | [55] | ||
GPD | [56] | ||
Exponential | [57] | ||
Point Process (PP) | [44] | ||
Parameter estimation | MLE | [40] | |
GMLE | [47] | ||
L-Moments | [48] | ||
PWM | [50] | ||
Bayesian | [49] | ||
Def. of Maxima (Block/POT) | Monthly/90th | [58] | |
6-monthly/95th | [58] | ||
Annual/99th | [58] | ||
Conf. Interval | Bootstrap | [52] | |
Normal | [51] | ||
Goodness-of-fit test | Kolmogorov-Smirnov | [59] | |
Anderson-Darling | [60] | ||
Cramer von Mises | [61] | ||
Kuiper | [61] | ||
[62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García Bustamante, E.; González Rouco, J.F.; Navarro, J.; Lucio Eceiza, E.E.; Rojas Labanda, C. Expected Recurrence of Extreme Winds in Northwestern Sahara and Associated Uncertainties. Energies 2021, 14, 6913. https://doi.org/10.3390/en14216913
García Bustamante E, González Rouco JF, Navarro J, Lucio Eceiza EE, Rojas Labanda C. Expected Recurrence of Extreme Winds in Northwestern Sahara and Associated Uncertainties. Energies. 2021; 14(21):6913. https://doi.org/10.3390/en14216913
Chicago/Turabian StyleGarcía Bustamante, Elena, J. Fidel González Rouco, Jorge Navarro, Etor E. Lucio Eceiza, and Cristina Rojas Labanda. 2021. "Expected Recurrence of Extreme Winds in Northwestern Sahara and Associated Uncertainties" Energies 14, no. 21: 6913. https://doi.org/10.3390/en14216913
APA StyleGarcía Bustamante, E., González Rouco, J. F., Navarro, J., Lucio Eceiza, E. E., & Rojas Labanda, C. (2021). Expected Recurrence of Extreme Winds in Northwestern Sahara and Associated Uncertainties. Energies, 14(21), 6913. https://doi.org/10.3390/en14216913