The Use of Flat Ceramic Membranes for Purification of the Liquid Fraction of the Digestate from Municipal Waste Biogas Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
4. Conclusions
- all the ceramic ultrafiltration and microfiltration membranes tested can be used for the purification of the liquid fraction of digestate from municipal waste biogas plants; however, the increase in membrane cut-off or pore size results in a deterioration of the digestate quality;
- the best separation efficiency of organic substances was obtained for the most compact membrane with a cut-off of 1 kDa; the use of 1 kDa membrane allowed to reduce DOC content by up to 55%, BOD5 up to 51%, and COD up to 43%;
- the use of sedimentation as a pre-treatment of the solution, prior to membrane separation, allows for a reduction in the content of contaminants in the solution;
- the optimum sedimentation time was 72 h, and a further extension of the sedimentation time caused the effectiveness of the process to be set at a virtually constant level; pre-sedimentation, preceding filtration on ceramic membranes, allowed for reduction in membrane fouling intensity, which resulted in the improvement of membrane transport properties;
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lieder, M.; Rashid, A. Towards circular economy implementation: A comprehensive review in context of manufacturing industry. J. Clean. Prod. 2016, 115, 36–51. [Google Scholar] [CrossRef]
- Zaman, A.U. A comprehensive study of the environmental and economic benefits of resource recovery from global waste management systems. J. Clean. Prod. 2016, 124, 41–50. [Google Scholar] [CrossRef]
- European Commission. Roadmap to a Resource Efficient Europe. 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52011DC0571 (accessed on 30 June 2021).
- European Commission. Towards a Circular Economy: A Zero Waste Programme for Europe. 2014. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52014DC0398 (accessed on 30 June 2021).
- Meyer, A.K.P.; Ehimen, E.A.; Holm-Nielsen, J.B. Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production. Biomass Bioenergy 2018, 111, 154–164. [Google Scholar] [CrossRef]
- Holm-Nielsen, J.B.; Al Seadi, T.; Oleskowicz-Popiel, P. The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 2009, 100, 5478–5484. [Google Scholar] [CrossRef] [PubMed]
- Battista, F.; Frison, N.; Bolzonella, D. Energy and Nutrients’ Recovery in Anaerobic Digestion of Agricultural Biomass: An Italian Perspective for Future Applications. Energies 2019, 12, 3287. [Google Scholar] [CrossRef] [Green Version]
- Scarlat, N.; Dallemand, J.F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Nevzorova, T.; Karakaya, E. Explaining the drivers of technological innovation systems: The case of biogas technologies in mature markets. J. Clean. Prod. 2020, 259, 120819. [Google Scholar] [CrossRef]
- Martinát, S.; Navrátil, J.; Dvořák, P.; Van der Horst, D.; Klusáček, P.; Kunc, J.; Frantál, B. Where AD plants wildly grow: The spatio-temporal diffusion of agricultural biogas production in the Czech Republic. Renew. Energy 2016, 95, 85–97. [Google Scholar] [CrossRef]
- Energy Regulatory Office. Report on the Activities of the President of the Energy Regulatory Office in 2020. 2021. Available online: https://bip.ure.gov.pl/bip/o-urzedzie/zadania-prezesa-ure/sprawozdania/800,Sprawozdania.html (accessed on 30 June 2021). (In Polish)
- The National Support Centre for Agriculture. Register of Agricultural Biogas Producers. 2021. Available online: https://www.kowr.gov.pl/odnawialne-zrodla-energii/biogaz-rolniczy/wytworcy-biogazu-rolniczego/rejestr-wytworcow-biogazu-rolniczego (accessed on 30 June 2021). (In Polish)
- Tan, F.; Zhu, Q.; Guo, X.; He, L. Effects of digestate on biomass of a selected energy crop and soil properties. J. Sci. Food Agric. 2021, 101, 927–936. [Google Scholar] [CrossRef]
- Monfet, E.; Aubry, G.; Ramirez, A.A. Nutrient removal and recovery from digestate: A review of the technology. Biofuels 2018, 9, 247–262. [Google Scholar] [CrossRef]
- Logan, M.; Visvanathan, C. Management strategies for anaerobic digestate of organic fraction of municipal solid waste: Current status and future prospects. Waste Manag. Res. 2019, 37, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Guo, J.; Dong, R.; Ahring, B.K.; Zhang, W. Properties of plant nutrient: Comparison of two nutrient recovery techniques using liquid fraction of digestate from anaerobic digester treating pig manure. Sci. Total Environ. 2016, 544, 774–781. [Google Scholar] [CrossRef]
- Waste Act of December 14th, 2012, Journal of Laws 2013, item 21, as Amended. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20130000021 (accessed on 30 June 2021). (In Polish)
- Fuchs, W.; Drosg, B. Assessment of the state of the art of technologies for the processing of digestate residue from anaerobic digesters. Water Sci. Technol. 2013, 67, 1984–1993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbes, C.; Roth, U.; Wulf, S.; Dahlin, J. Economic assessment of different biogas digestate processing technologies: A scenario-based analysis. J. Clean. Prod. 2020, 255, 120282. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Belia, E.; Meers, E.; Tack, F.M.G.; Vanrolleghem, P.A. Nutrient recovery from digested waste: Towards a generic roadmap for setting up an optimal treatment train. Waste Manag. 2018, 78, 385–392. [Google Scholar] [CrossRef]
- Slepetiene, A.; Volungevicius, J.; Jurgutis, L.; Liaudanskiene, I.; Amaleviciute-Volunge, K.; Slepetys, J.; Ceseviciene, J. The potential of digestate as a biofertilizer in eroded soils of Lithuania. Waste Manag. 2020, 102, 441–451. [Google Scholar] [CrossRef]
- Guilayn, F.; Jimenez, J.; Martel, J.L.; Rouez, M.; Crest, M.; Patureau, D. First fertilizing-value typology of digestates: A decision-making tool for regulation. Waste Manag. 2019, 86, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Ehmann, A.; Thumm, U.; Lewandowski, I. Fertilizing Potential of Separated Biogas Digestates in Annual and Perennial Biomass Production Systems. Front. Sustain. Food Syst. 2018, 2, 12. [Google Scholar] [CrossRef] [Green Version]
- Sefeedpari, P.; Pudełko, R.; Jędrejek, A.; Kozak, M.; Borzęcka, M. To What Extent Is Manure Produced, Distributed, and Potentially Available for Bioenergy? A Step toward Stimulating Circular Bio-Economy in Poland. Energies 2020, 13, 6266. [Google Scholar] [CrossRef]
- Maurer, C.; Seiler-Petzold, J.; Schulz, R.; Müller, J. Short-Term Nitrogen Uptake of Barley from Differently Processed Biogas Digestate in Pot Experiments. Energies 2019, 12, 696. [Google Scholar] [CrossRef] [Green Version]
- Gienau, T.; Brüß, U.; Kraume, M.; Rosenberger, S. Nutrient Recovery from Biogas Digestate by Optimised Membrane Treatment. Waste Biomass Valorization 2018, 9, 2337–2347. [Google Scholar] [CrossRef]
- Światczak, P.; Cydzik-Kwiatkowska, A.; Zielińska, M. Treatment of liquid phase of digestate from agricultural biogas plant in a system with aerobic granules and ultrafiltration. Water 2019, 11, 104. [Google Scholar] [CrossRef] [Green Version]
- Urbanowska, A.; Polowczyk, I.; Kabsch-Korbutowicz, M. Treatment of municipal waste biogas plant digestate using physico-chemical and membrane processes. Desalin. Water Treat. 2021, 214, 214–223. [Google Scholar] [CrossRef]
- Baker, R.W. Membrane Technology and Applications; John Wiley & Sons, Ltd.: Chichester, UK, 2012; ISBN 9780470743720. [Google Scholar]
- Warsinger, D.M.; Chakraborty, S.; Tow, E.W.; Plumlee, M.H.; Bellona, C.; Loutatidou, S.; Karimi, L.; Mikelonis, A.M.; Achilli, A.; Ghassemi, A.; et al. A review of polymeric membranes and processes for potable water reuse. Prog. Polym. Sci. 2018, 81, 209–237. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Lyu, Z.; Gu, Q.; Zhang, L.; Wang, J. Ceramic-based membranes for water and wastewater treatment. Colloids Surf. A Physicochem. Eng. Asp. 2019, 578, 123513. [Google Scholar] [CrossRef]
- Sondhi, R.; Bhave, R.; Jung, G. Applications and benefits of ceramic membranes. Membr. Technol. 2003, 2003, 5–8. [Google Scholar] [CrossRef]
- Amin, S.K.; Hassan, M.; Abdallah, H. An Overview of Production and Development of Ceramic Membranes Solid Waste Management and Pollution Prevention View project 1st International Conference for Membrane Technology & Its Applications View project. Int. J. Appl. Eng. Res. 2016, 11, 7708–7721. [Google Scholar]
- Zou, D.; Fan, Y. State-of-the-art developments in fabricating ceramic membranes with low energy consumption. Ceram. Int. 2021, 47, 14966–14987. [Google Scholar] [CrossRef]
- Durdević, D.; Hulenić, I. Anaerobic digestate treatment selection model for biogas plant costs and emissions reduction. Processes 2020, 8, 142. [Google Scholar] [CrossRef] [Green Version]
- Szymańska, M.; Szara, E.; Sosulski, T.; Wąs, A.; Van Pruissen, G.W.P.; Cornelissen, R.L.; Borowik, M.; Konkol, M. A Bio-Refinery concept for n and p recovery—A chance for biogas plant development. Energies 2019, 12, 155. [Google Scholar] [CrossRef] [Green Version]
- Yue, C.; Dong, H.; Chen, Y.; Shang, B.; Wang, Y.; Wang, S.; Zhu, Z. Direct purification of digestate using ultrafiltration membranes: Influence of pore size on filtration behavior and fouling characteristics. Membranes 2021, 11, 179. [Google Scholar] [CrossRef]
- Urbanowska, A.; Kabsch-Korbutowicz, M.; Wnukowski, M.; Seruga, P.; Baranowski, M.; Pawlak-Kruczek, H.; Serafin-Tkaczuk, M.; Krochmalny, K.; Niedzwiecki, L. Treatment of liquid by-products of hydrothermal carbonization (HTC) of agricultural digestate using membrane separation. Energies 2020, 13, 262. [Google Scholar] [CrossRef] [Green Version]
- Sterlitech Ceramic Membrane Filters. Available online: https://www.sterlitech.com/media/wysiwyg/pdfs/Sterlitech_Catalog2016_Ceramic_pdf (accessed on 28 March 2021).
- Schäfer, A.I.; Mauch, R.; Waite, T.D.; Fane, A.G. Charge effects in the fractionation of natural organics using ultrafiltration. Environ. Sci. Technol. 2002, 36, 2572–2580. [Google Scholar] [CrossRef] [PubMed]
- Field, R. Fundamentals of Fouling. Membr. Technol. 2010, 4, 1–23. [Google Scholar]
MEMBRANE TYPE | Cut-Off | Active Layer | Contact Angle, ° | Filtration Area, cm2 | Nominal Thickness, mm | pH Range | Max Pressure, MPa | Max Temp., °C |
---|---|---|---|---|---|---|---|---|
Fine UF | 1 kDa | TiO2 | 59.6 | 56 | 2.5 | 2–14 | 0.4 | 350 |
Fine UF | 5 kDa | TiO2 | 57.6 | 2–14 | ||||
UF | 15 kDa | ZrO2 | 43.8 | 0–14 | ||||
UF | 50 kDa | ZrO2 | 42.4 | 0–14 | ||||
MF | 0.14 µm | ZrO2-TiO2 | 36.6 | 0–14 | ||||
MF | 0.45 µm | ZrO2-TiO2 | 36.7 | 0–14 |
pH | 7.2 |
---|---|
Conductivity, mS/cm | 22 |
Total solids, mg/dm3 | 18,090 |
Chemical oxygen demand (COD), mg O2/dm3 | 6190 |
Biochemical oxygen demand (BOD), mg O2/dm3 | 2170 |
Dissolved organic carbon (DOC), mg C/dm3 | 3050 |
NH4+-N, mg N/dm3 | 1742 |
NO2−-N, mg N/dm3 | 6.25 |
NO3−-N, mg N/dm3 | below the limit of detection |
PO43−, mg/dm3 | 18.9 |
mesophilic bacteria, CFU/cm3 | 111 · 106 |
thermophilic bacteria, CFU/cm3 | 163 · 102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbanowska, A.; Kabsch-Korbutowicz, M. The Use of Flat Ceramic Membranes for Purification of the Liquid Fraction of the Digestate from Municipal Waste Biogas Plants. Energies 2021, 14, 3947. https://doi.org/10.3390/en14133947
Urbanowska A, Kabsch-Korbutowicz M. The Use of Flat Ceramic Membranes for Purification of the Liquid Fraction of the Digestate from Municipal Waste Biogas Plants. Energies. 2021; 14(13):3947. https://doi.org/10.3390/en14133947
Chicago/Turabian StyleUrbanowska, Agnieszka, and Małgorzata Kabsch-Korbutowicz. 2021. "The Use of Flat Ceramic Membranes for Purification of the Liquid Fraction of the Digestate from Municipal Waste Biogas Plants" Energies 14, no. 13: 3947. https://doi.org/10.3390/en14133947
APA StyleUrbanowska, A., & Kabsch-Korbutowicz, M. (2021). The Use of Flat Ceramic Membranes for Purification of the Liquid Fraction of the Digestate from Municipal Waste Biogas Plants. Energies, 14(13), 3947. https://doi.org/10.3390/en14133947