An Overview of Biodiesel Production via Calcium Oxide Based Catalysts: Current State and Perspective
Abstract
:1. Introduction
2. Biodiesel
3. Catalysts Applied in the Transesterification
4. CaO-Based Catalysts
4.1. Pure CaO Catalyst
4.2. Mixed Oxides CaO Catalysts
4.3. Supported and Loaded CaO Catalysts
4.4. Seashell and Eggshell Derived CaO Catalysts
5. Factors Affecting the Transesterification Catalyzed with CaO-Based Catalysts
5.1. Effect of Catalyst Reusability
5.2. Effect of Catalyst Loading Amount
5.3. Effect of Water Content on Catalytic Activity
5.4. Effect of Alcohol to Oil Ratio
5.5. Effect of Support
5.6. Effect of FFA on Catalytic Activity
5.7. Effect of Basic Sites
5.8. Effect of Calcination Temperature
6. Reactors for Heterogeneously Catalyzed Transesterification
6.1. The Packed Bed Reactor (PBR)
6.2. The Trickle-Bed Reactor (TBR)
6.3. The Packed Bed Membrane Reactor (PBMR)
7. Ultrasonic-Assisted and Microwave-Assisted Transesterification
7.1. Ultrasonic-Assisted Transesterification
7.2. Microwave-Assisted Transesterification
8. Challenges and Prospects
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amini, Z.; Ong, H.C.; Harrison, M.D.; Kusumo, F.; Mazaheri, H.; Ilham, Z. Biodiesel production by lipase-catalyzed transesterification of Ocimum basilicum L. (sweet basil) seed oil. Energy Convers. Manag. 2017, 132, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, G.; Alam, A.; Mofijur, M.; Jahirul, M.; Lv, Y.; Xiong, W.; Ong, H.C.; Xu, J. Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass. Renew. Sustain. Energy Rev. 2021, 135, 110209. [Google Scholar] [CrossRef]
- Jeffry, L.; Ong, M.Y.; Nomanbhay, S.; Mofijur, M.; Mubashir, M.; Show, P.L. Greenhouse gases utilization: A review. Fuel 2021, 301, 121017. [Google Scholar] [CrossRef]
- Doh, J.; Budhwar, P.; Wood, G. Long-term energy transitions and international business: Concepts, theory, methods, and a research agenda. J. Int. Bus. Stud. 2021, 1–20. [Google Scholar]
- York, R.; Bell, S.E. Energy transitions or additions?: Why a transition from fossil fuels requires more than the growth of renewable energy. Energy Res. Soc. Sci. 2019, 51, 40–43. [Google Scholar] [CrossRef]
- Electricity in the United States; U.S Energy Information Administration: Washington, DC, USA, 2021.
- Thanh, L.T.; Okitsu, K.; Van Boi, L.; Maeda, Y. Catalytic Technologies for Biodiesel Fuel Production and Utilization of Glycerol: A Review. Catalysts 2012, 2, 191–222. [Google Scholar] [CrossRef] [Green Version]
- Liew, R.K.; Nam, W.L.; Chong, M.Y.; Phang, X.Y.; Su, M.H.; Yek, P.N.Y.; Ma, N.L.; Cheng, C.K.; Chong, C.T.; Lam, S.S. Oil palm waste: An abundant and promising feedstock for microwave pyrolysis conversion into good quality biochar with potential multi-applications. Process. Saf. Environ. Prot. 2018, 115, 57–69. [Google Scholar] [CrossRef]
- Waldron, K.W. Advances in Biorefineries: Biomass and Waste Supply Chain Exploitation; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Konur, O. Biodiesel Fuels: Science, Technology, Health, and Environment; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Mofijur, M.; Masjuki, H.H.; Kalam, M.A.; Atabani, A.E. Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective. Energy 2013, 55, 879–887. [Google Scholar] [CrossRef]
- Mofijur, M.; Masjuki, H.H.; Kalam, M.A.; Atabani, A.E.; Fattah, I.M.R.; Mobarak, H.M. Comparative evaluation of performance and emission characteristics of Moringa oleifera and Palm oil based biodiesel in a diesel engine. Ind. Crop. Prod. 2014, 53, 78–84. [Google Scholar] [CrossRef]
- Silitonga, A.; Masjuki, H.; Mahlia, T.; Ong, H.; Chong, W.; Boosroh, M. Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renew. Sustain. Energy Rev. 2013, 22, 346–360. [Google Scholar] [CrossRef]
- Hazrat, M.A.; Rasul, M.G.; Mofijur, M.; Khan, M.M.K.; Djavanroodi, F.; Azad, A.K.; Bhuiya, M.M.K.; Silitonga, A. A Mini Review on the Cold Flow Properties of Biodiesel and its Blends. Front. Energy Res. 2020, 8. [Google Scholar] [CrossRef]
- Mazaheri, H.; Ong, H.C.; Masjuki, H.; Amini, Z.; Harrison, M.D.; Wang, C.-T.; Kusumo, F.; Alwi, A. Rice bran oil based biodiesel production using calcium oxide catalyst derived from Chicoreus brunneus shell. Energy 2018, 144, 10–19. [Google Scholar] [CrossRef]
- Hazrat, M.A.; Rasul, M.G.; Khan, M.M.K.; Mofijur, M.; Ahmed, S.F.; Ong, H.C.; Vo, D.-V.N.; Show, P.L. Techniques to improve the stability of biodiesel: A review. Environ. Chem. Lett. 2021, 19, 2209–2236. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, L.; Wang, B.; Xu, F.; Sun, R.C. Biodiesel preparation from transesterification of glycerol trioleate catalyzed by basic ionic liquids. Chin. Chem. Lett. 2012, 23, 379–382. [Google Scholar] [CrossRef]
- Marwaha, A.; Dhir, A.; Mahla, S.K.; Mohapatra, S.K. An overview of solid base heterogeneous catalysts for biodiesel production. Catal. Rev. 2018, 60, 594–628. [Google Scholar] [CrossRef]
- Ling, J.S.J.; Tan, Y.H.; Mubarak, N.M.; Kansedo, J.; Saptoro, A.; Nolasco-Hipolito, C. A review of heterogeneous calcium oxide based catalyst from waste for biodiesel synthesis. SN Appl. Sci. 2019, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lukić, I.; Kesić, Ž.; Zdujić, M.; Skala, D. Synthesis of calcium oxide based catalysts for biodiesel production. In Physical Chemistry 2018, Proceedings of the 14th International Conference on Fundamental and Applied Aspects of Physical Chemistry, Belgrade, Serbia, 24–28 September 2018; Society of Physical Chemists of Serbia: Belgrade, Serbia, 2018; Volume 1. [Google Scholar]
- Aghbashlo, M.; Peng, W.; Tabatabaei, M.; Kalogirou, S.A.; Soltanian, S.; Hosseinzadeh-Bandbafha, H.; Mahian, O.; Lam, S.S. Machine learning technology in biodiesel research: A review. Prog. Energy Combust. Sci. 2021, 85, 100904. [Google Scholar] [CrossRef]
- Ong, H.C.; Masjuki, H.; Mahlia, T.M.I.; Silitonga, A.; Chong, W.; Leong, K. Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine. Energy Convers. Manag. 2014, 81, 30–40. [Google Scholar] [CrossRef]
- Abbaszaadeh, A.; Ghobadian, B.; Omidkhah, M.R.; Najafi, G. Current biodiesel production technologies: A comparative review. Energy Convers. Manag. 2012, 63, 138–148. [Google Scholar] [CrossRef]
- Silitonga, A.; Ong, H.; Masjuki, H.; Mahlia, T.M.I.; Chong, W.; Yusaf, T.F. Production of biodiesel from Sterculia foetida and its process optimization. Fuel 2013, 111, 478–484. [Google Scholar] [CrossRef] [Green Version]
- Saifuddin, N.; Samiuddin, A.; Kumaran, P. A Review on Processing Technology for Biodiesel Production. Trends Appl. Sci. Res. 2015, 10, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Tahvildari, K.; Chitsaz, H.R.; Mozaffarinia, P. Heterogeneous Catalytic Modified Process in the Production of Biodiesel from Sunflower Oil, Waste Cooking Oil and Olive Oil by Transesterification Method. Acad. Res. Int. 2014, 5, 60. [Google Scholar]
- Ong, H.C.; Milano, J.; Silitonga, A.S.; Hassan, M.H.; Shamsuddin, A.H.; Wang, C.-T.; Mahlia, T.M.I.; Siswantoro, J.; Kusumo, F.; Sutrisno, J. Biodiesel production from Calophyllum inophyllum-Ceiba pentandra oil mixture: Optimization and characterization. J. Clean. Prod. 2019, 219, 183–198. [Google Scholar] [CrossRef]
- Atabani, A.; Silitonga, A.; Ong, H.; Mahlia, T.M.I.; Masjuki, H.; Badruddin, I.A.; Fayaz, H. Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew. Sustain. Energy Rev. 2013, 18, 211–245. [Google Scholar] [CrossRef]
- Chhetri, A.B.; Tango, M.S.; Budge, S.M.; Watts, K.C.; Islam, M.R. Non-Edible Plant Oils as New Sources for Biodiesel Production. Int. J. Mol. Sci. 2008, 9, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Amini, Z.; Ilham, Z.; Ong, H.C.; Mazaheri, H.; Chen, W.-H. State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production. Energy Convers. Manag. 2017, 141, 339–353. [Google Scholar] [CrossRef]
- Degfie, T.A.; Mamo, T.T.; Mekonnen, Y.S. Optimized Biodiesel Production from Waste Cooking Oil (WCO) using Calcium Oxide (CaO) Nano-catalyst. Sci. Rep. 2019, 9, 18982. [Google Scholar] [CrossRef] [Green Version]
- Mofijur, M.; Siddiki, S.Y.A.; Shuvho, B.A.; Djavanroodi, F.; Fattah, I.R.; Ong, H.C.; Chowdhury, M.; Mahlia, T. Effect of nanocatalysts on the transesterification reaction of first, second and third generation biodiesel sources—A mini-review. Chemosphere 2021, 270, 128642. [Google Scholar] [CrossRef]
- Koberg, M.; Gedanken, A. New and Future Developments in Catalysis. Chapter 9. Using Microwave Radiation and SrO as a Catalyst for the Complete Conversion of Oils, Cooked Oils, and Microalgae to Biodiesel; Elsevier Inc.: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Thangaraj, B.; Solomon, P.R.; Muniyandi, B.; Ranganathan, S.; Lin, L. Catalysis in biodiesel production—A review. Clean Energy 2018, 3, 2–23. [Google Scholar] [CrossRef] [Green Version]
- Hassani, M.; Najafpour, G.D.; Mohammadi, M.; Rabiee, M. Preparation, characterization and application of zeolite-based catalyst for production of biodiesel from waste cooking oil. J. Sci. Ind. Res. 2014, 73, 129–133. [Google Scholar]
- Endalew, A.K.; Kiros, Y.; Zanzi, R. Heterogeneous catalysis for biodiesel production from Jatropha curcas oil (JCO). Energy 2011, 36, 2693–2700. [Google Scholar] [CrossRef]
- Leung, D.Y.; Wu, X.; Leung, M. A review on biodiesel production using catalyzed transesterification. Appl. Energy 2010, 87, 1083–1095. [Google Scholar] [CrossRef]
- Lam, M.K.; Lee, K.T.; Mohamed, A.R. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnol. Adv. 2010, 28, 500–518. [Google Scholar] [CrossRef]
- Lee, A.F.; Bennett, J.A.; Manayil, J.C.; Wilson, K. Heterogeneous Catalysis for Sustainable Biodiesel Production via Esterification and Transesterification. Chem. Soc. Rev. 2014, 43, 7887–7916. [Google Scholar] [CrossRef] [Green Version]
- Xue, W.; Zhou, Y.-C.; Song, B.-A.; Shi, X.; Wang, J.; Yin, S.-T.; Hu, D.-Y.; Jin, L.-H.; Yang, S. Synthesis of biodiesel from Jatropha curcas L. seed oil using artificial zeolites loaded with CH3COOK as a heterogeneous catalyst. Nat. Sci. 2009, 1, 55–62. [Google Scholar] [CrossRef]
- Deshmane, V.G.; Adewuyi, Y.G. Synthesis and kinetics of biodiesel formation via calcium methoxide base catalyzed transesterification reaction in the absence and presence of ultrasound. Fuel 2013, 107, 474–482. [Google Scholar] [CrossRef]
- Marinković, D.; Stanković, M.V.; Veličković, A.V.; Avramović, J.M.; Miladinović, M.R.; Stamenković, O.O.; Veljković, V.B.; Jovanović, D.M. Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives. Renew. Sustain. Energy Rev. 2016, 56, 1387–1408. [Google Scholar] [CrossRef]
- Alonso, D.M.; Vila, F.; Mariscal, R.; Ojeda, M.; Granados, M.L.; Santamaría-González, J. Relevance of the physicochemical properties of CaO catalysts for the methanolysis of triglycerides to obtain biodiesel. Catal. Today 2010, 158, 114–120. [Google Scholar] [CrossRef]
- Wang, J.-X.; Chen, K.-T.; Wu, J.-S.; Wang, P.-H.; Huang, S.-T.; Chen, C.-C. Production of biodiesel through transesterification of soybean oil using lithium orthosilicate solid catalyst. Fuel Process. Technol. 2012, 104, 167–173. [Google Scholar] [CrossRef]
- Hebbar, H.H.; Math, M.C.; Yatish, K. Optimization and kinetic study of CaO nano-particles catalyzed biodiesel production from Bombax ceiba oil. Energy 2018, 143, 25–34. [Google Scholar] [CrossRef]
- Devaraj, K.; Veerasamy, M.; Aathika, S.; Mani, Y.; Thanarasu, A.; Dhanasekaran, A.; Subramanian, S. Study on effectiveness of activated calcium oxide in pilot plant biodiesel production. J. Clean. Prod. 2019, 225, 18–26. [Google Scholar] [CrossRef]
- Badnore, A.U.; Jadhav, N.L.; Pinjari, D.V.; Pandit, A.B. Efficacy of newly developed nano-crystalline calcium oxide catalyst for biodiesel production. Chem. Eng. Process. Process. Intensif. 2018, 133, 312–319. [Google Scholar] [CrossRef]
- Roschat, W.; Siritanon, T.; Yoosuk, B.; Promarak, V. Biodiesel production from palm oil using hydrated lime-derived CaO as a low-cost basic heterogeneous catalyst. Energy Convers. Manag. 2016, 108, 459–467. [Google Scholar] [CrossRef]
- Maneerung, T.; Kawi, S.; Dai, Y.; Wang, C.-H. Sustainable biodiesel production via transesterification of waste cooking oil by using CaO catalysts prepared from chicken manure. Energy Convers. Manag. 2016, 123, 487–497. [Google Scholar] [CrossRef]
- Aghabarari, B.; Martinez-Huerta, M. Biodiesel Production Using Calcined Waste Filter Press Cake from a Sugar Manufacturing Facility as a Highly Economic Catalyst. J. Am. Oil Chem. Soc. 2016, 93, 773–779. [Google Scholar] [CrossRef]
- Korkut, I.; Bayramoglu, M. Ultrasound assisted biodiesel production in presence of dolomite catalyst. Fuel 2016, 180, 624–629. [Google Scholar] [CrossRef]
- Poosumas, J.; Ngaosuwan, K.; Quitain, A.T.; Assabumrungrat, S. Role of ultrasonic irradiation on transesterification of palm oil using calcium oxide as a solid base catalyst. Energy Convers. Manag. 2016, 120, 62–70. [Google Scholar] [CrossRef]
- Kouzu, M.; Kasuno, T.; Tajika, M.; Sugimoto, Y.; Yamanaka, S.; Hidaka, J. Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel 2008, 87, 2798–2806. [Google Scholar] [CrossRef]
- Khalifeh, R.; Esmaeili, H. Biodiesel production from goat fat using calcium oxide nanocatalyst and its combination with diesel fuel to improve fuel properties. Int. J. Sustain. Eng. 2020, 1–10. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, Y.; Liu, H.; Yan, T.; Zhang, Z. Preparation of nano-CaO and catalyzing tri-component coupling transesterification to produce biodiesel. Inorg. Nano Met. Chem. 2020, 50, 501–507. [Google Scholar] [CrossRef]
- George, P.A.O.; Eras, J.J.C.; Gutierrez, A.S.; Hens, L.; Vandecasteele, C. Residue from Sugarcane Juice Filtration (Filter Cake): Energy Use at the Sugar Factory. Waste Biomass Valorization 2010, 1, 407–413. [Google Scholar] [CrossRef]
- Teo, S.H.; Rashid, U.; Choong, S.T.; Taufiq-Yap, Y.H. Heterogeneous calcium-based bimetallic oxide catalyzed transesterification of Elaeis guineensis derived triglycerides for biodiesel production. Energy Convers. Manag. 2017, 141, 20–27. [Google Scholar] [CrossRef]
- Foroutan, R.; Mohammadi, R.; Esmaeili, H.; Bektashi, F.M.; Tamjidi, S. Transesterification of waste edible oils to biodiesel using calcium oxide@magnesium oxide nanocatalyst. Waste Manag. 2020, 105, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, P.; Fan, M.; Jiang, P. Biodiesel production from soybean oil catalyzed by magnetic nanoparticle MgFe2O4@CaO. Fuel 2016, 164, 314–321. [Google Scholar] [CrossRef]
- Fan, M.; Liu, Y.; Zhang, P.; Jiang, P. Blocky shapes Ca-Mg mixed oxides as a water-resistant catalyst for effective synthesis of biodiesel by transesterification. Fuel Process. Technol. 2016, 149, 163–168. [Google Scholar] [CrossRef]
- Lee, H.V.; Juan, J.C.; Hin, T.-Y.Y.; Ong, H.C. Environment-Friendly Heterogeneous Alkaline-Based Mixed Metal Oxide Catalysts for Biodiesel Production. Energies 2016, 9, 611. [Google Scholar] [CrossRef]
- Syamsuddin, Y.; Murat, M.; Hameed, B. Synthesis of fatty acid methyl ester from the transesterification of high- and low-acid-content crude palm oil (Elaeis guineensis) and karanj oil (Pongamia pinnata) over a calcium–lanthanum–aluminum mixed-oxides catalyst. Bioresour. Technol. 2016, 214, 248–252. [Google Scholar] [CrossRef]
- Kesić, Ž.; Lukić, I.; Zdujić, M.; Jovalekić, Č.; Veljković, V.; Skala, D. Assessment of CaTiO3, CaMnO3, CaZrO3 and Ca2Fe2O5 perovskites as heterogeneous base catalysts for biodiesel synthesis. Fuel Process. Technol. 2016, 143, 162–168. [Google Scholar] [CrossRef]
- Jindapon, W.; Kuchonthara, P.; Ngamcharussrivichai, C. Biodiesel production over Ca, Zn, and Al mixed compounds in fixed-bed reactor: Effects of premixing catalyst extrudates with methanol, oil, and fatty acid methyl esters. Fuel Process. Technol. 2016, 148, 67–75. [Google Scholar] [CrossRef]
- Naveenkumar, R.; Baskar, G. Biodiesel production from Calophyllum inophyllum oil using zinc doped calcium oxide (Plaster of Paris) nanocatalyst. Bioresour. Technol. 2019, 280, 493–496. [Google Scholar] [CrossRef]
- Umdu, E.S.; Tuncer, M.; Seker, E. Transesterification of Nannochloropsis oculata microalga’s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts. Bioresour. Technol. 2009, 100, 2828–2831. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Zhang, J.; Wei, Q.; Zheng, J.; Zhang, J. Transesterification of soybean oil to biodiesel using zeolite supported CaO as strong base catalysts. Fuel Process. Technol. 2013, 109, 13–18. [Google Scholar] [CrossRef]
- Chen, G.-Y.; Shan, R.; Shi, J.; Yan, B.-B. Transesterification of palm oil to biodiesel using rice husk ash-based catalysts. Fuel Process. Technol. 2015, 133, 8–13. [Google Scholar] [CrossRef]
- Vardast, N.; Haghighi, M.; Dehghani, S. Sono-dispersion of calcium over Al-MCM-41used as a nanocatalyst for biodiesel production from sunflower oil: Influence of ultrasound irradiation and calcium content on catalytic properties and performance. Renew. Energy 2019, 132, 979–988. [Google Scholar] [CrossRef]
- Rabie, A.M.; Shaban, M.; Abukhadra, M.R.; Hosny, R.; Ahmed, S.A.; Negm, N. Diatomite supported by CaO/MgO nanocomposite as heterogeneous catalyst for biodiesel production from waste cooking oil. J. Mol. Liq. 2019, 279, 224–231. [Google Scholar] [CrossRef]
- Lani, N.S.; Ngadi, N.; Yahya, N.Y.; Rahman, R.A. Synthesis, characterization and performance of silica impregnated calcium oxide as heterogeneous catalyst in biodiesel production. J. Clean. Prod. 2017, 146, 116–124. [Google Scholar] [CrossRef]
- Reyero, I.; Moral, A.; Bimbela, F.; Radosevic, J.; Sanz, O.; Montes, M.; Gandía, L.M. Metallic monolithic catalysts based on calcium and cerium for the production of biodiesel. Fuel 2016, 182, 668–676. [Google Scholar] [CrossRef]
- Nisar, J.; Razaq, R.; Farooq, M.; Iqbal, M.; Khan, R.A.; Sayed, M.; Shah, A.; Rahman, I.U. Enhanced biodiesel production from Jatropha oil using calcined waste animal bones as catalyst. Renew. Energy 2017, 101, 111–119. [Google Scholar] [CrossRef]
- Wilkanowicz, S.I.; Hollingsworth, N.R.; Saud, K.; Kadiyala, U.; Larson, R.G. Immobilization of calcium oxide onto polyacrylonitrile (PAN) fibers as a heterogeneous catalyst for biodiesel production. Fuel Process. Technol. 2020, 197, 106214. [Google Scholar] [CrossRef]
- Al-Jammal, N.; Al-Hamamre, Z.; Alnaief, M. Manufacturing of zeolite based catalyst from zeolite tuft for biodiesel production from waste sunflower oil. Renew. Energy 2016, 93, 449–459. [Google Scholar] [CrossRef]
- De Vasconcellos, A.; Laurenti, J.B.; Miller, A.H.; da Silva, D.A.; de Moraes, F.R.; Aranda, D.A.; Nery, J.G. Potential new biocatalysts for biofuel production: The fungal lipases of Thermomyces lanuginosus and Rhizomucor miehei immobilized on zeolitic supports ion exchanged with transition metals. Microporous Mesoporous Mater. 2015, 214, 166–180. [Google Scholar] [CrossRef] [Green Version]
- Pratap, S.; Shamshuddin, S.; Thimmaraju, N.; Shyamsundar, M.; Reena, S. Kinetics of transesterification of Madhuca Indica oil over modified zeolites: Biodiesel synthesis. Bangladesh J. Sci. Ind. Res. 2015, 50, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Qiu, F.; Yang, D.; Ye, B. Preparation of biodiesel from soybean oil catalyzed by Al-Ca hydrotalcite loaded with K2CO3 as heterogeneous solid base catalyst. Fuel Process. Technol. 2014, 126, 383–391. [Google Scholar] [CrossRef]
- Zein, Y.M.; Anal, A.K.; Prasetyoko, D.; Qoniah, I. Biodiesel Production from Waste Palm Oil Catalyzed by Hierarchical ZSM-5 Supported Calcium Oxide. Indones. J. Chem. 2016, 16, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Pavlović, S.M.; Marinković, D.M.; Kostić, M.D.; Lončarević, D.R.; Mojović, L.V.; Stanković, M.V.; Veljković, V.B. The chicken eggshell calcium oxide ultrasonically dispersed over lignite coal fly ash-based cancrinite zeolite support as a catalyst for biodiesel production. Fuel 2021, 289, 119912. [Google Scholar] [CrossRef]
- Zhang, Y.; Niu, S.; Han, K.; Li, Y.; Lu, C. Synthesis of the SrO–CaO–Al2O3 trimetallic oxide catalyst for transesterification to produce biodiesel. Renew. Energy 2021, 168, 981–990. [Google Scholar] [CrossRef]
- Witoon, T.; Bumrungsalee, S.; Vathavanichkul, P.; Palitsakun, S.; Saisriyoot, M.; Faungnawakij, K. Biodiesel production from transesterification of palm oil with methanol over CaO supported on bimodal meso-macroporous silica catalyst. Bioresour. Technol. 2014, 156, 329–334. [Google Scholar] [CrossRef]
- Ho, W.W.S.; Ng, H.K.; Gan, S.; Tan, S.H. Evaluation of palm oil mill fly ash supported calcium oxide as a heterogeneous base catalyst in biodiesel synthesis from crude palm oil. Energy Convers. Manag. 2014, 88, 1167–1178. [Google Scholar] [CrossRef]
- Xie, W.; Zhao, L. Production of biodiesel by transesterification of soybean oil using calcium supported tin oxides as heterogeneous catalysts. Energy Convers. Manag. 2013, 76, 55–62. [Google Scholar] [CrossRef]
- Wan, Z.; Hameed, B.H.; Nor, N.M.; Bashah, N.A.A. Optimization of Methyl Ester Production from Waste Palm Oil Using Activated Carbon Supported Calcium Oxide Catalyst. Solid State Phenom. 2018, 280, 346–352. [Google Scholar] [CrossRef]
- Bet-Moushoul, E.; Farhadi, K.; Mansourpanah, Y.; Nikbakht, A.M.; Molaei, R.; Forough, M. Application of CaO-based/Au nanoparticles as heterogeneous nanocatalysts in biodiesel production. Fuel 2016, 164, 119–127. [Google Scholar] [CrossRef]
- Ismail, S.; Ahmed, A.S.; Anr, R.; Hamdan, S. Biodiesel Production from Castor Oil by Using Calcium Oxide Derived from Mud Clam Shell. J. Renew. Energy 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Jindapon, W.; Ashokkumar, V.; Rashid, U.; Rojviriya, C.; Pakawanit, P.; Ngamcharussrivichai, C. Production of biodiesel over waste seashell-derived active and stable extrudate catalysts in a fixed-bed reactor. Environ. Technol. Innov. 2020, 20, 101051. [Google Scholar] [CrossRef]
- Viriya-Empikul, N.; Krasae, P.; Puttasawat, B.; Yoosuk, B.; Chollacoop, N.; Faungnawakij, K. Waste shells of mollusk and egg as biodiesel production catalysts. Bioresour. Technol. 2010, 101, 3765–3767. [Google Scholar] [CrossRef]
- Borges, L.D.; Moura, N.N.; Costa, A.A.; Braga, P.R.; Dias, J.A.; Dias, S.C.; De Macedo, J.L.; Ghesti, G.F. Investigation of biodiesel production by HUSY and Ce/HUSY zeolites: Influence of structural and acidity parameters. Appl. Catal. A Gen. 2013, 450, 114–119. [Google Scholar] [CrossRef]
- Kesić, Ž.; Lukić, I.; Zdujić, M.; Mojović, L.; Skala, D. Calcium oxide based catalysts for biodiesel production: A review. Chem. Ind. Chem. Eng. Q. 2016, 10. [Google Scholar]
- Mohiddin, M.N.; Saleh, A.; Reddy, A.N.; Hamdan, S. Turritella terebra Shell Synthesized Calcium Oxide Catalyst for Biodiesel Production from Chicken Fat. Mater. Sci. Forum 2020, 997, 93–101. [Google Scholar] [CrossRef]
- Yuliana, M.; Santoso, S.P.; Soetaredjo, F.E.; Ismadji, S.; Angkawijaya, A.E.; Irawaty, W.; Ju, Y.-H.; Tran-Nguyen, P.L.; Hartono, S.B. Utilization of waste capiz shell—Based catalyst for the conversion of leather tanning waste into biodiesel. J. Environ. Chem. Eng. 2020, 8, 104012. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Amesho, K.T.; Chen, C.-E.; Cheng, P.-C.; Chou, F.-C. A cleaner process for green biodiesel synthesis from waste cooking oil using recycled waste oyster shells as a sustainable base heterogeneous catalyst under the microwave heating system. Sustain. Chem. Pharm. 2020, 17, 100310. [Google Scholar] [CrossRef]
- Thakur, S.; Singh, S.; Pal, B. Superior adsorption removal of dye and high catalytic activity for transesterification reaction displayed by crystalline CaO nanocubes extracted from mollusc shells. Fuel Process. Technol. 2021, 213, 106707. [Google Scholar] [CrossRef]
- Norwazan, A.; Norzaima, N.; Rosdzimin, A.; Rahim, A.M. Waste cooking oil biodiesel conversion using CaO of mussel shell as a heterogeneous catalyst. Adv. Nat. Appl. Sci. 2020, 14, 280–287. [Google Scholar]
- Niju, S.; Rabia, R.; Devi, K.S.; Kumar, M.N.; Balajii, M. Modified Malleus malleus Shells for Biodiesel Production from Waste Cooking Oil: An Optimization Study Using Box–Behnken Design. Waste Biomass Valorization 2020, 11, 793–806. [Google Scholar] [CrossRef]
- Niju, S.; Vishnupriya, G.; Balajii, M. Process optimization of Calophyllum inophyllum-waste cooking oil mixture for biodiesel production using Donax deltoides shells as heterogeneous catalyst. Sustain. Environ. Res. 2019, 29, 18. [Google Scholar] [CrossRef] [Green Version]
- Pandit, P.R.; Fulekar, M. Biodiesel production from microalgal biomass using CaO catalyst synthesized from natural waste material. Renew. Energy 2019, 136, 837–845. [Google Scholar] [CrossRef]
- Yin, X.; Duan, X.; You, Q.; Dai, C.; Tan, Z.; Zhu, X. Biodiesel production from soybean oil deodorizer distillate usingcalcined duck eggshell as catalyst. Energy Convers. Manag. 2016, 112, 199–207. [Google Scholar] [CrossRef]
- Roschat, W.; Siritanon, T.; Kaewpuang, T.; Yoosuk, B.; Promarak, V. Economical and green biodiesel production process using river snail shells-derived heterogeneous catalyst and co-solvent method. Bioresour. Technol. 2016, 209, 343–350. [Google Scholar] [CrossRef]
- Jindapon, W.; Jaiyen, S.; Ngamcharussrivichai, C. Seashell-derived mixed compounds of Ca, Zn and Al as active and stable catalysts for the transesterification of palm oil with methanol to biodiesel. Energy Convers. Manag. 2016, 122, 535–543. [Google Scholar] [CrossRef]
- Indarti, E. Hydrated calcined Cyrtopleura costata seashells as an effective solid catalyst for microwave-assisted preparation of palm oil biodiesel. Energy Convers. Manag. 2016, 117, 319–325. [Google Scholar] [CrossRef]
- Anr, R.; Saleh, A.A.; Islam, S.; Hamdan, S.; Maleque, A. Biodiesel Production from Crude Jatropha Oil using a Highly Active Heterogeneous Nanocatalyst by Optimizing Transesterification Reaction Parameters. Energy Fuels 2015, 30, 334–343. [Google Scholar] [CrossRef]
- Lee, S.L.; Wong, Y.C.; Tan, Y.P.; Yew, S.Y. Transesterification of palm oil to biodiesel by using waste obtuse horn shell-derived CaO catalyst. Energy Convers. Manag. 2015, 93, 282–288. [Google Scholar] [CrossRef]
- Sirisomboonchai, S.; Abuduwayiti, M.; Guan, G.; Samart, C.; Abliz, S.; Hao, X.; Kusakabe, K.; Abudula, A. Biodiesel production from waste cooking oil using calcined scallop shell as catalyst. Energy Convers. Manag. 2015, 95, 242–247. [Google Scholar] [CrossRef]
- Suwanthai, W.; Punsuvon, V.; Vaithanomsat, P. Optimization of biodiesel production from a calcium methoxide catalyst using a statistical model. Korean J. Chem. Eng. 2016, 33, 90–98. [Google Scholar] [CrossRef]
- Syazwani, O.N.; Rashid, U.; Yap, Y.H.T. Low-cost solid catalyst derived from waste Cyrtopleura costata (Angel Wing Shell) for biodiesel production using microalgae oil. Energy Convers. Manag. 2015, 101, 749–756. [Google Scholar] [CrossRef]
- Zamberi, M.; Ani, F. Biodiesel production from high FFA rubber seed oil using waste cockles. ARPN J. Eng. Appl. Sci. 2016, 11, 7782–7787. [Google Scholar]
- Nair, P.; Singh, B.; Upadhyay, S.; Sharma, Y. Synthesis of biodiesel from low FFA waste frying oil using calcium oxide derived from Mereterix mereterix as a heterogeneous catalyst. J. Clean. Prod. 2012, 29, 82–90. [Google Scholar] [CrossRef]
- Sharma, Y.C.; Singh, B.; Korstad, J. Application of an Efficient Nonconventional Heterogeneous Catalyst for Biodiesel Synthesis from Pongamia pinnata Oil. Energy Fuels 2010, 24, 3223–3231. [Google Scholar] [CrossRef]
- Cho, Y.B.; Seo, G. High activity of acid-treated quail eggshell catalysts in the transesterification of palm oil with methanol. Bioresour. Technol. 2010, 101, 8515–8519. [Google Scholar] [CrossRef]
- Suryaputra, W.; Winata, I.; Indraswati, N.; Ismadji, S. Waste capiz (Amusium cristatum) shell as a new heterogeneous catalyst for biodiesel production. Renew. Energy 2013, 50, 795–799. [Google Scholar] [CrossRef] [Green Version]
- Jaiyen, S.; Naree, T.; Ngamcharussrivichai, C. Comparative study of natural dolomitic rock and waste mixed seashells as heterogeneous catalysts for the methanolysis of palm oil to biodiesel. Renew. Energy 2015, 74, 433–440. [Google Scholar] [CrossRef]
- Boro, J.; Konwar, L.J.; Thakur, A.J.; Deka, D. Ba doped CaO derived from waste shells of Tstriatula (TS-CaO) as heterogeneous catalyst for biodiesel production. Fuel 2014, 129, 182–187. [Google Scholar] [CrossRef]
- Mohan, S. Studies on optimization of biodiesel production-snail shell as eco-friendly catalyst by transesterification of neem oil. Int. J. Innov. Res. Technol. Sci. Eng. 2015, 1, 5–10. [Google Scholar]
- Yan, S.; Lu, H.; Liang, B. Supported CaO Catalysts Used in the Transesterification of Rapeseed Oil for the Purpose of Biodiesel Production. Energy Fuels 2007, 22, 646–651. [Google Scholar] [CrossRef]
- Piker, A.; Tabah, B.; Perkas, N.; Gedanken, A. A green and low-cost room temperature biodiesel production method from waste oil using egg shells as catalyst. Fuel 2016, 182, 34–41. [Google Scholar] [CrossRef]
- Romero, R.; Natividad, R.; Martínez, S.L. Biodiesel Production by Using Heterogeneous Catalysts; INTECH Open Access Publisher: London, UK, 2011. [Google Scholar]
- Perea, A.; Kelly, T.; Hangun-Balkir, Y. Utilization of waste seashells and Camelina sativa oil for biodiesel synthesis. Green Chem. Lett. Rev. 2016, 9, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Dehkordi, A.M.; Ghasemi, M. Transesterification of waste cooking oil to biodiesel using Ca and Zr mixed oxides as heterogeneous base catalysts. Fuel Process. Technol. 2012, 97, 45–51. [Google Scholar] [CrossRef]
- De Lima, A.L.; Ronconi, C.M.; Mota, C.J.A. Heterogeneous basic catalysts for biodiesel production. Catal. Sci. Technol. 2016, 6, 2877–2891. [Google Scholar] [CrossRef]
- Hsiao, M.-C.; Lin, C.-C.; Chang, Y.-H. Microwave irradiation-assisted transesterification of soybean oil to biodiesel catalyzed by nanopowder calcium oxide. Fuel 2011, 90, 1963–1967. [Google Scholar] [CrossRef]
- Yoosuk, B.; Udomsap, P.; Puttasawat, B.; Krasae, P. Improving transesterification acitvity of CaO with hydration technique. Bioresour. Technol. 2010, 101, 3784–3786. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, S.; Yang, R.; Yan, Y. Biodiesel production from vegetable oil using heterogenous acid and alkali catalyst. Fuel 2010, 89, 2939–2944. [Google Scholar] [CrossRef]
- Zamberi, M.M.; Ani, F.N.; Abdollah, M.F. Heterogeneous transesterification of rubber seed oil biodiesel production. J. Teknol. 2016, 78. [Google Scholar] [CrossRef] [Green Version]
- Kouzu, M.; Kajita, A.; Fujimori, A. Catalytic activity of calcined scallop shell for rapeseed oil transesterification to produce biodiesel. Fuel 2016, 182, 220–226. [Google Scholar] [CrossRef]
- Mohadesi, M.; Hojabri, Z.; Moradi, G. Biodiesel production using alkali earth metal oxides catalysts synthesized by sol-gel method. Biofuel Res. J. 2014, 1, 30–33. [Google Scholar] [CrossRef]
- Umdu, E.S.; Seker, E. Transesterification of sunflower oil on single step sol–gel made Al2O3 supported CaO catalysts: Effect of basic strength and basicity on turnover frequency. Bioresour. Technol. 2012, 106, 178–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, M.; Yang, R.; Li, M. Biodiesel production from hempseed oil using alkaline earth metal oxides supporting copper oxide as bi-functional catalysts for transesterification and selective hydrogenation. Fuel 2013, 103, 398–407. [Google Scholar] [CrossRef]
- Meng, Y.-L.; Wang, B.-Y.; Li, S.-F.; Tian, S.-J.; Zhang, M.-H. Effect of calcination temperature on the activity of solid Ca/Al composite oxide-based alkaline catalyst for biodiesel production. Bioresour. Technol. 2013, 128, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Al-Zaini, E.O.; Olsen, J.; Nguyen, T.H.; Adesina, A. Transesterification of Waste Cooking Oil in Presence of Crushed Seashell as a Support for Solid Heterogeneous Catalyst. SAE Int. J. Fuels Lubr. 2011, 4, 139–157. [Google Scholar] [CrossRef]
- Son, S.M.; Kusakabe, K. Transesterification of sunflower oil in a countercurrent trickle-bed reactor packed with a CaO catalyst. Chem. Eng. Process. Process. Intensif. 2011, 50, 650–654. [Google Scholar] [CrossRef]
- Baroutian, S.; Aroua, M.K.; Raman, A.A.A.; Sulaiman, N.M. A packed bed membrane reactor for production of biodiesel using activated carbon supported catalyst. Bioresour. Technol. 2011, 102, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Buasri, A.; Chaiyut, N.; Loryuenyong, V.; Rodklum, C.; Chaikwan, T.; Kumphan, N. Continuous Process for Biodiesel Production in Packed Bed Reactor from Waste Frying Oil Using Potassium Hydroxide Supported on Jatropha curcas Fruit Shell as Solid Catalyst. Appl. Sci. 2012, 2, 641–653. [Google Scholar] [CrossRef] [Green Version]
- Mootabadi, H.; Salamatinia, B.; Bhatia, S.; Abdullah, A.Z. Ultrasonic-assisted biodiesel production process from palm oil using alkaline earth metal oxides as the heterogeneous catalysts. Fuel 2010, 89, 1818–1825. [Google Scholar] [CrossRef]
- Chen, G.-Y.; Shan, R.; Yan, B.-B.; Shi, J.; Li, S.-Y.; Liu, C.-Y. Remarkably enhancing the biodiesel yield from palm oil upon abalone shell-derived CaO catalysts treated by ethanol. Fuel Process. Technol. 2016, 143, 110–117. [Google Scholar] [CrossRef]
- Shan, R.; Zhao, C.; Lv, P.; Yuan, H.; Yao, J. Catalytic applications of calcium rich waste materials for biodiesel: Current state and perspectives. Energy Convers. Manag. 2016, 127, 273–283. [Google Scholar] [CrossRef]
- Silitonga, A.; Shamsuddin, A.; Mahlia, T.M.I.; Milano, J.; Kusumo, F.; Siswantoro, J.; Dharma, S.; Sebayang, A.; Masjuki, H.; Ong, H.C. Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization. Renew. Energy 2020, 146, 1278–1291. [Google Scholar] [CrossRef]
- Tan, S.X.; Lim, S.; Ong, H.C.; Pang, Y.L. State of the art review on development of ultrasound-assisted catalytic transesterification process for biodiesel production. Fuel 2019, 235, 886–907. [Google Scholar] [CrossRef]
Biodiesel | Petrodiesel | |
---|---|---|
Exhaust emissions | Low | High |
Renewable supply | Renewable | Non-renewable |
Biodegradability | Good | Poor |
Toxicity | Non-toxic | Toxic |
Brake thermal efficiency | Low | High |
Lubricity | Good | Poor |
Combustion | Complete | Incomplete |
Carbon monoxide emissions | Low | High |
Sulphur and aromatic content | 0.0% | Sulphur dioxide: ~500 ppm Aromatics: 20–40% |
Explosively | Non-explosive | Explosive |
Flashpoint (K) | 423 | 337 |
Cetane number | 45–70 | 40–52 |
Chemical structure | C12, C14, C16, C18 and C22 fatty acid methyl esters | C12 to C25 hydrocarbons |
Oxygen content (%) | 11 | * N/A |
Cold flow properties (Solidification) | Rapid | Gradual |
Conductivity | High; >500 pico S/m | Low |
Feedstock (Oil) | Catalyst Type | Temperature (°C) | Molar Ratio (Methanol: Oil) | Catalyst (wt%) | Time (min) | Yield (wt%) | Reusability (Cycle) | Reference |
---|---|---|---|---|---|---|---|---|
Goat fat | Nano based | 70 | 12:1 | 1 | 180 | 93.7 | 3 | [54] |
WCO | Commercial | 80 | 1:1 | 3.0 | 120 | 96.0 | N/A | [46] |
Rapeseed | Nano based | 65 | 1:8 | 5 | 240 | 92.0 | N/A | [55] |
Bombax ceiba | Nano based | 65 | 10.4 | 1.5 | 705 | 96.2 | 5 | [45] |
Soybean | Nanocrystalline | 60 | 6:1 | 4.0 | 80 | 89.9 | 3 | [47] |
Palm | Lime based | 65 | 15:1 | 6.0 | 120 | 97.0 | 4 | [48] |
WCO | Chicken manure based | 65 | 15:1 | 7.5 | 360 | 90.0 | N/A | [49] |
Canola | FPC based | 60 | 12:1 | 5.0 | 90 | 96.0 | 7 | [50] |
Canola | Dolomite based | 60 | 9:1 | 5.0 | 90 | 97.4 | 4 | [51] |
Palm | Commercial | 60 | 9:1 | 2.0 | 240 | 84.5 | 3 | [52] |
Feedstock (Oil) | Catalyst | Synthesis Method | Temperature (°C) | Molar Ratio (Methanol: Oil) | Catalyst (wt%) | Time (min) | Yield (wt%) | Reusability (Cycle) | Reference |
---|---|---|---|---|---|---|---|---|---|
Calophyllum inophyllum | Zn-CaO | Precipitation Calcination | 55 | 9:1 | 6.0 | 80 | 89.0 | 4 | [65] |
Elaeis guineensis | CaO–MgO | Co-precipitation Calcination | 60 | 15:1 | 4.0 | 360 | 99.0 | 5 | [57] |
Waste edible | CaO–MgO | Wet impregnation | 69.4 | 17:1 | 4.6 | 428 | 98.4 | 6 | [58] |
Soybean | MgFe2O4 and CaO | Alkali precipitation | 70 | 12:1 | 1.0 | 180 | 98.3 | 5 | [59] |
Soybean | Ca-Mg | Oxalate precipitation | 70 | 12:1 | 1.0 | 120 | 98.0 | 5 | [60] |
Jatropha Curcas | CaO-ZnO | Co-precipitation | 120 | 25:1 | 3.0 | 180 | 94.0 | N/A | [61] |
Karanj | CaO–La2O3–Al2O3 | Co-precipitation Calcination | 150 | 9:1 | 5.0 | 180 | 97.0 | N/A | [62] |
Sunflower | CaTiO3 and CaO | Mechanochemical Calcination | 60 | 6:1 | 10.0 | 600 | 98.1 | N/A | [63] |
Palm | Ca, Zn, and Al | Dissolution Precipitation | 65 | 30:1 | 10.0 | 180 | 99.9 | N/A | [64] |
Feedstock (Oil) | Synthesis Method | Temperature (°C) | Molar Ratio (Methanol: Oil) | Catalyst (wt%) | Time (min) | Yield (wt%) | Reusability (Cycle) | Reference |
---|---|---|---|---|---|---|---|---|
Palm | Hydrothermal | 65 | 18:1 | 7.5 | 180 | 98.2 | 5 | [81] |
Sunflower | Ultrasound-dispersion | 60 | 12:1 | 4.0 | 120 | 96.5 | N/A | [80] |
Sunflower | Impregnation and sono dispersion | 70 | 12:1 | 12.0 | N/A | N/A | 4 | [69] |
WCO | Impregnation | 90 | 1:15 | 6.0 | 120 | 96.5 | 5 | [70] |
Palm | Impregnation | 60 | 20:1 | 3.0 | 120 | 87.5 | 6 | [71] |
Sunflower | Metallic citrates decomposition | 60 | 48:1 | 2.0 | 240 | 99.0 | N/A | [72] |
Soybean | Wet impregnation | 70 | 12:1 | 8.0 | 360 | 89.3 | 5 | [84] |
Soybean | Co-precipitation followed by impregnation | 65 | 13:1 | 2.0 | 120 | 95.1 | 4 | [78] |
Jatropha curcas | Impregnation | 70 | 9:1 | 6.0 | 180 | 96.1 | 4 | [73] |
Waste palm | Impregnation | 65 | 12:1 | 6.0 | 360 | 95.4 | N/A | [79] |
Soybean | Microwave irradiation | 65 | 9:1 | 3.0 | 180 | 95.0 | N/A | [67] |
Palm | Incipient wetness impregnation | 60 | 12:1 | 9.0 | 360 | 94.1 | 5 | [82] |
Crude palm | Wet impregnation | 45 | 12:1 | 6.0 | 180 | 97.1 | 3 | [83] |
Feedstock (Oil) | Catalyst Source | Temperature (°C) | Molar Ratio (Methanol: Oil) | Catalyst (wt%) | Time (min) | Yield (wt%) | Reference |
---|---|---|---|---|---|---|---|
Chicken fat | Turritella terebra | 65 | 1:1 | 4.0 | 90 | 94.0 | [92] |
Leather tanning waste | Waste capiz shell | 60 | 6:1 | 3.0 | 360 | 93.4 | [93] |
WCO | Waste oyster shell | 65 | 9:1 | 6.0 | 180 | 87.3 | [94] |
Cotton seed | Waste mollusc shells | 65 | 12:1 | 5.0 | 270 | 99.5 | [95] |
Palm | Waste Mereterix mereterixs | 60 | 30:1 | 10.0 | 180 | 95 | [88] |
WCO | mussel shell | 65 | 9:1 | 10.0 | 180 | 89.0 | [96] |
WCO | Malleus malleus | 65 | 12:1 | 7.5 | 86 | 93.8 | [97] |
WCO | Donax deltoides | 65 | 63:8 | 7.5 | 129 | 96.5 | [98] |
Chlorella vulgaris biomass | Eggshell | 70 | 10:1 | 1.4 | 180 | 92.3 | [99] |
WCO | Mereterix mereterixs | 60 | 6.0:1 | 0.1 | 180 | 89.0 | [100] |
Palm | Riversnail shell | 65 | 12:1 | 1.0 | 90 | N/A | [101] |
Palm | Mixed seashells | 60 | 30:1 | 10.0 | 180 | 96.0 | [102] |
Castor | Mud clam shell | 60 | 14:1 | 3.0 | 120 | 96.7 | [87] |
Palm | Cyrtopleura costata | 60 | 5:1 | 0.1 | 10 | 96.0 | [103] |
Jatropha curcas | Polymedosaerosa | 25 | 5.2:1 | 0.02 | 133 | 98.5 | [104] |
Palm oil | Waste obtuse horn shell | N/A | 12:1 | 5.0 | 360 | 86.8 | [105] |
WCO | Scallop shell | 65 | 6:1 | 5.0 | 120 | 86.0 | [106] |
WCO | Eggshell | 25 | 6:1 | 5.8 | 660 | 97.0 | [107] |
Microalgal | Cyrtopleura costata | 65 | 150:1 | 9.0 | 120 | 84.1 | [108] |
Rubber seeds | Waste cockle shell | N/A | 15.7:1 | 9.0 | 201 | 88.1 | [109] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazaheri, H.; Ong, H.C.; Amini, Z.; Masjuki, H.H.; Mofijur, M.; Su, C.H.; Anjum Badruddin, I.; Khan, T.M.Y. An Overview of Biodiesel Production via Calcium Oxide Based Catalysts: Current State and Perspective. Energies 2021, 14, 3950. https://doi.org/10.3390/en14133950
Mazaheri H, Ong HC, Amini Z, Masjuki HH, Mofijur M, Su CH, Anjum Badruddin I, Khan TMY. An Overview of Biodiesel Production via Calcium Oxide Based Catalysts: Current State and Perspective. Energies. 2021; 14(13):3950. https://doi.org/10.3390/en14133950
Chicago/Turabian StyleMazaheri, Hoora, Hwai Chyuan Ong, Zeynab Amini, Haji Hassan Masjuki, M. Mofijur, Chia Hung Su, Irfan Anjum Badruddin, and T.M. Yunus Khan. 2021. "An Overview of Biodiesel Production via Calcium Oxide Based Catalysts: Current State and Perspective" Energies 14, no. 13: 3950. https://doi.org/10.3390/en14133950
APA StyleMazaheri, H., Ong, H. C., Amini, Z., Masjuki, H. H., Mofijur, M., Su, C. H., Anjum Badruddin, I., & Khan, T. M. Y. (2021). An Overview of Biodiesel Production via Calcium Oxide Based Catalysts: Current State and Perspective. Energies, 14(13), 3950. https://doi.org/10.3390/en14133950